Structural investigation of the gating and regulatory mechanism of voltage-gated Ca2+ channels
电压门控Ca2通道的门控和调节机制的结构研究
基本信息
- 批准号:10311489
- 负责人:
- 金额:$ 32.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAdaptor Signaling ProteinAlgorithmsArrhythmiaBasic ScienceBindingBiochemicalBiological AssayCalciumCalcium ChannelCalcium ionCardiovascular DiseasesCell DeathCell membraneCellsChemicalsClinical DataComplexCouplingCryoelectron MicroscopyCysteineDiseaseDissectionDockingDrug IndustryDrug TargetingElectron MicroscopeElectrophysiology (science)EpilepsyEventFDA approvedFutureGenetic TranscriptionGoalsHomology ModelingHypertensionHypokalemic periodic paralysisImageInvestigationIonsIsradipineLigandsMalignant hyperpyrexia due to anesthesiaMediatingMembraneMembrane PotentialsMethodsMolecularMolecular ConformationMutagenesisMutationMutation AnalysisMyopathyNimodipineOryctolagus cuniculusPeptidesPharmaceutical PreparationsPharmacotherapyPhasePhysiologicalPhysiological ProcessesPlayPreparationProductionProteinsRegulationReportingResearchResolutionRoleRyR1Ryanodine Receptor Calcium Release ChannelSamplingSideSignal TransductionSiteSkeletal MuscleSpecificityStructureStructure-Activity RelationshipTitanToxinVerapamilWorkbasecrosslinkdensitydesigndrug developmentdrug discoveryelectron energygabapentinimprovedinterestmolecular dynamicsnervous system disorderneurotransmissionparticlepregabalinpreventreconstructionresponsetoolvoltage
项目摘要
Calcium ions (Ca2+) play a critical role in diverse physiological processes such as contraction, secretion,
neurotransmission, gene transcription, and cell death. The voltage-gated calcium (Cav) channels open upon
membrane depolarization, converting the membrane electrical signals to intracellular Ca2+-mediated events.
Malfunction or dysregulation of Cav channels is associated with a broad spectrum of neurological,
cardiovascular, and muscular disorders. Despite the physiological and pathophysiological significance of Cav
channels, further progress has been acutely limited by the dearth of structural information. Indeed, the only
available structure of any eukaryotic Cav channel is that of the Cav1.1 channel complex, which my group
determined using single-particle electron cryo-microscopy (cryo-EM). Cav channels are targeted by multiple
FDA-approved drugs for the treatment of neurological and cardiovascular disorders, and their activity is
modulated by various peptide toxins. These ligands could be used to stabilize the Cav channels in various
functional states, facilitating the dissection of the gating mechanism. In turn, structural elucidation of Cav
channels in complex with the drugs and toxins will elucidate the molecular basis for their modes of action.
These structures will guide mutagenesis for functional and mechanistic characterizations, serve as an
important framework for homology modeling, ligand docking, and molecular dynamics simulation analyses, and
eventually facilitate potential drug discovery. The overarching goal of this proposal is to achieve an improved
mechanistic understanding of Cav channels through high-resolution structural determination of Cav1.1 in
complex with various modulatory ligands using single-particle cryo-EM. In Aim 1, we will further improve the
resolution of the Cav1.1 channel to beyond 3 Å by optimizing cryo-sample preparation and hardware
configuration. Improved resolution will afford a more accurate structural template for molecular dynamics
simulation analysis. In Aim 2, we will biochemically recapitulate the interactions between the purified Cav1.1
channel and various drugs and toxins, and elucidate the structures of Cav1.1 in complex with well-defined
ligands. These structures will guide the design of mutations for functional characterizations and mechanistic
investigations in cell-based electrophysiological assays. In Aim 3, we will investigate the structural basis for the
modulation of Cav1.1 by the adaptor protein Stac3. This study will encompass crosslinking, mass spectrometric
analysis, and new algorithms for cryo-EM to unravel the recognition between Stac3 and Cav1.1. Completion of
the proposed research will advance our understanding of the function and disease-causing mechanisms of Cav
channels as well as facilitate future drug discovery.
钙离子(Ca 2+)在多种生理过程中起关键作用,例如收缩、分泌、
神经传递、基因转录和细胞死亡。电压门控钙(Cav)通道打开时,
膜去极化,将膜电信号转化为细胞内Ca 2+介导的事件。
Cav通道的功能障碍或失调与广泛的神经系统疾病有关,
心血管和肌肉疾病。尽管Cav在生理和病理生理上具有重要意义,
由于缺乏结构性信息,进一步的进展受到严重限制。的确,
任何真核Cav通道的可用结构是Cav 1.1通道复合物,我的小组
使用单粒子电子冷冻显微镜(cryo-EM)测定。Cav频道被多个
FDA批准的用于治疗神经和心血管疾病的药物,其活性是
由各种肽毒素调节。这些配体可用于稳定各种细胞中的Cav通道。
功能状态,便于门控机制的解剖。反过来,Cav的结构解析
与药物和毒素复合的通道将阐明其作用模式的分子基础。
这些结构将指导诱变的功能和机制表征,作为一种新的生物学方法。
同源建模、配体对接和分子动力学模拟分析的重要框架,以及
最终促进潜在的药物发现。该提案的总体目标是实现更好的
通过高分辨率的Cav1.1结构测定,
使用单颗粒cryo-EM与各种调节配体复合。在目标1中,我们将进一步改善
通过优化冷冻样品制备和硬件,Cav1.1通道的分辨率超过3 μ m
配置.分辨率的提高将为分子动力学提供更精确的结构模板
仿真分析在目标2中,我们将生物化学地概括纯化的Cav1.1之间的相互作用。
通道和各种药物和毒素,并阐明Cav1.1的结构与明确定义的
配体。这些结构将指导突变的设计,用于功能表征和机制分析。
基于细胞的电生理学测定的研究。在目标3中,我们将研究
通过衔接蛋白Stac 3调节Cav1.1。这项研究将包括交联,质谱
分析,和新的算法cryo-EM解开Stac 3和Cav1.1之间的识别。完成
这项研究将进一步加深我们对Cav的功能和致病机制的认识,
渠道,以及促进未来的药物发现。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nieng Yan其他文献
Nieng Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nieng Yan', 18)}}的其他基金
Structural investigation of the gating and regulatory mechanism of voltage-gated Ca2+ channels
电压门控Ca2通道的门控和调节机制的结构研究
- 批准号:
10059258 - 财政年份:2019
- 资助金额:
$ 32.94万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 32.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 32.94万 - 项目类别:
Operating Grants