Spinal muscular atrophy: Mechanisms & treatment strategies.
脊髓性肌萎缩症:机制
基本信息
- 批准号:10308474
- 负责人:
- 金额:$ 39.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-15 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAdverse effectsBehavioralBehavioral AssayBiologyCellsCessation of lifeChromosome 9ChronicClinicalClinical TrialsDataDefectDevelopmentDiagnosisDiseaseEvaluationFDA approvedGenerationsGenesGenetic ScreeningHealthHumanIndividualInfantInfant MortalityInheritedInstitutionInvestigationLate-Onset DisorderLengthLightLong-Term EffectsMediatingMediator of activation proteinMindMolecularMolecular AnalysisMolecular ChaperonesMorphologyMotor NeuronsMouse ProteinMusMuscleMutateMutationMyopathyNerveNeuromuscular DiseasesOnset of illnessOutcomeParalysedPathway interactionsPatientsPharmaceutical PreparationsPhenotypePre-Clinical ModelProteinsProtocols documentationRNA SplicingReportingResearchRestRiskRodentSMN protein (spinal muscular atrophy)SMN1 geneSMN2 geneSkeletal MuscleSpinalSpinal Muscular AtrophyTherapeuticTimeTissuesTranscriptTranslatingValidationbaseclinically relevantdisease phenotypeeffective therapyexperimental studymolecular arraymortalitymouse modelmutantneuromuscular systemneuron lossnoveloptimismprematurepreventstemtreatment effecttreatment strategy
项目摘要
Project Summary
Spinal muscular atrophy (SMA) is a common, frequently fatal, neuromuscular disorder caused by mutations in
the Survival of Motor Neuron 1 (SMN1) gene and, consequently, a paucity of the SMN protein. In humans, an
almost identical copy gene, SMN2, is unable to fully compensate for loss of SMN1 owing to a splicing defect
and thus an inability to express sufficient protein to stave off disease. In the two decades that we have
researched SMA much progress has been made, from the identification of the disease gene and the
description of its protein to the generation of pre-clinical models and, most recently, the approval of Spinraza, a
promising drug that raises SMN levels and thus thwarts the inevitable paralysis and frequent death associated
with SMA. While Spinraza, in particular, raises considerable optimism for SMA patients, significant challenges
remain and, in our minds, stem from two crucial deficiencies. First, despite the milestones achieved, how low
SMN protein evolves into the SMA phenotype, selectively triggering motor neuron death and preferentially
disabling the neuromuscular system remains a singular mystery. This is especially perplexing considering
SMN's most widely-cited function of orchestrating the splicing cascade. Identifying mediators that provide a
logical explanation for why splicing defects cause SMA or, uncovering additional, more disease-relevant SMN
functions is therefore not only mechanistically but also therapeutically relevant. Second, while it is clear that
administering Spinraza provides immediate benefit to patients, it is premature to make a determination of the
long-term outcome of such treatment; the drug is selectively delivered to the CNS, raising questions about the
effects of chronic low SMN in the periphery. Besides, the strategy of raising SMN appears inadequate in the
symptomatic patient. Here we describe 3 related sets of experiments that address the deficiencies identified
above. Aim 1 proposes to define disease-relevant mechanisms by exploiting a novel line of SMA mice in
which early mortality, motor neuron loss and a severe phenotype are replaced by prolonged survival, intact
motor neurons and a decidedly mild phenotype. We hypothesize that a spontaneous mutation in a chaperone
protein that the mice express suppresses the SMA phenotype. We will confirm and extend this finding to
determine how the chaperone modulates the effects of low SMN. In aim 2, we will examine the potential long-
term adverse effects of persistently low levels of SMN in muscles of model mice expressing normal protein in
the CNS. Such rodents represent a pre-clinical model of SMA patients administered Spinraza. We propose
that chronic low SMN in skeletal muscle has a profoundly negative impact on the health of the tissue and
contributes to the overall SMA phenotype. In aim 3, we will determine if the disease-causing effects of low
SMN in muscle can nevertheless be mitigated upon restoring protein post-symptomatically. Reversing such
defects will inform the manner in which current treatments may have to be modified to prove more potent. Our
study thus addresses important mechanistic as well as clinical aspects of SMA.
项目概要
脊髓性肌萎缩症 (SMA) 是一种常见且常常致命的神经肌肉疾病,由脊髓性肌萎缩症 (SMA) 突变引起
运动神经元存活 1 (SMN1) 基因,因此导致 SMN 蛋白缺乏。在人类中,一个
几乎相同的拷贝基因 SMN2 由于剪接缺陷而无法完全补偿 SMN1 的损失
因此无法表达足够的蛋白质来预防疾病。在我们这二十年里
SMA的研究取得了很大进展,从致病基因的鉴定和
从对其蛋白质的描述到临床前模型的生成,以及最近 Spinraza 的批准,
一种很有前途的药物,可以提高 SMN 水平,从而阻止不可避免的瘫痪和频繁死亡
与 SMA。尽管 Spinraza 特别为 SMA 患者带来了相当大的乐观情绪,但也面临着重大挑战
在我们看来,这种现象仍然存在,并且源于两个关键缺陷。首先,尽管取得了里程碑式的成就,但其水平有多低?
SMN蛋白进化成SMA表型,选择性触发运动神经元死亡并优先
使神经肌肉系统失去功能仍然是一个谜。考虑到这一点尤其令人困惑
SMN 最广泛引用的功能是协调拼接级联。识别中介者提供
合理解释为什么剪接缺陷会导致 SMA,或者发现更多与疾病相关的 SMN
因此,功能不仅在机制上而且在治疗上也相关。其次,虽然很明显
给予 Spinraza 可以为患者带来立竿见影的好处,但现在就做出决定还为时过早
此类治疗的长期结果;该药物被选择性地输送到中枢神经系统,引发了关于
外周慢性低 SMN 的影响。此外,提高SMN的策略在
有症状的患者。在这里,我们描述了 3 组相关的实验,以解决已发现的缺陷
多于。目标 1 提出通过利用新型 SMA 小鼠品系来定义疾病相关机制
早期死亡、运动神经元丧失和严重的表型被延长的生存期、完好无损所取代
运动神经元和明显温和的表型。我们假设伴侣的自发突变
小鼠表达的蛋白质抑制 SMA 表型。我们将确认这一发现并将其扩展至
确定伴侣如何调节低 SMN 的影响。在目标 2 中,我们将研究潜在的长期
表达正常蛋白的模型小鼠肌肉中持续低水平的 SMN 的长期不良影响
中枢神经系统。这些啮齿类动物代表了接受 Spinraza 治疗的 SMA 患者的临床前模型。我们建议
骨骼肌中的慢性低 SMN 对组织的健康产生深远的负面影响
有助于整体 SMA 表型。在目标 3 中,我们将确定低浓度是否会导致疾病
然而,症状后恢复蛋白质后可以减轻肌肉中的 SMN。扭转这样的
缺陷将告诉我们如何修改当前的治疗方法以证明更有效。我们的
因此,这项研究解决了 SMA 的重要机制和临床问题。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Emerging concepts underlying selective neuromuscular dysfunction in infantile-onset spinal muscular atrophy.
婴儿性脊柱肌肉萎缩的选择性神经肌肉功能障碍的基础的新兴概念。
- DOI:10.4103/1673-5374.308073
- 发表时间:2021-10
- 期刊:
- 影响因子:6.1
- 作者:Gollapalli K;Kim JK;Monani UR
- 通讯作者:Monani UR
Muscle: an independent contributor to the neuromuscular spinal muscular atrophy disease phenotype.
- DOI:10.1172/jci.insight.171878
- 发表时间:2023-09-22
- 期刊:
- 影响因子:8
- 作者:Jha, Narendra N.;Kim, Jeong-Ki;Her, Yoon-Ra;Monani, Umrao R.
- 通讯作者:Monani, Umrao R.
Diminished muscle oxygen uptake and fatigue in spinal muscular atrophy.
- DOI:10.1002/acn3.51353
- 发表时间:2021-05
- 期刊:
- 影响因子:5.3
- 作者:Montes J;Goodwin AM;McDermott MP;Uher D;Hernandez FM;Coutts K;Cocchi J;Hauschildt M;Cornett KM;Rao AK;Monani UR;Ewing Garber C;De Vivo DC
- 通讯作者:De Vivo DC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Umrao Monani其他文献
Umrao Monani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Umrao Monani', 18)}}的其他基金
Mechanisms and SMN-independent therapies for spinal muscular atrophy
脊髓性肌萎缩症的机制和不依赖 SMN 的疗法
- 批准号:
10435837 - 财政年份:2022
- 资助金额:
$ 39.66万 - 项目类别:
A "humanized" mouse model of Glut1 deficiency syndrome.
Glut1 缺乏综合征的“人源化”小鼠模型。
- 批准号:
10506187 - 财政年份:2022
- 资助金额:
$ 39.66万 - 项目类别:
Mechanisms and SMN-independent therapies for spinal muscular atrophy
脊髓性肌萎缩症的机制和不依赖 SMN 的疗法
- 批准号:
10579298 - 财政年份:2022
- 资助金额:
$ 39.66万 - 项目类别:
Spinal muscular atrophy: Mechanisms & treatment strategies.
脊髓性肌萎缩症:机制
- 批准号:
10063922 - 财政年份:2018
- 资助金额:
$ 39.66万 - 项目类别:
The Spinal Muscular Atrophy NMJ phenotype: mechanisms and molecular mediators
脊髓性肌萎缩症 NMJ 表型:机制和分子介质
- 批准号:
9385016 - 财政年份:2017
- 资助金额:
$ 39.66万 - 项目类别:
The contributing effects of muscle, nerve and the NMJ to SMA pathology
肌肉、神经和 NMJ 对 SMA 病理的影响
- 批准号:
7525404 - 财政年份:2008
- 资助金额:
$ 39.66万 - 项目类别:
The contributing effects of muscle, nerve and the NMJ to SMA pathology
肌肉、神经和 NMJ 对 SMA 病理的影响
- 批准号:
7802912 - 财政年份:2008
- 资助金额:
$ 39.66万 - 项目类别:
Novel genetic determinants of the neuromuscular SMA phenotype
神经肌肉 SMA 表型的新遗传决定因素
- 批准号:
8660097 - 财政年份:2008
- 资助金额:
$ 39.66万 - 项目类别:
The contributing effects of muscle, nerve and the NMJ to SMA pathology
肌肉、神经和 NMJ 对 SMA 病理的影响
- 批准号:
8051726 - 财政年份:2008
- 资助金额:
$ 39.66万 - 项目类别:
Novel genetic determinants of the neuromuscular SMA phenotype
神经肌肉 SMA 表型的新遗传决定因素
- 批准号:
8370078 - 财政年份:2008
- 资助金额:
$ 39.66万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.66万 - 项目类别:
Research Grant














{{item.name}}会员




