Machine Learning for Generalized Multiscale Modeling
用于广义多尺度建模的机器学习
基本信息
- 批准号:9791802
- 负责人:
- 金额:$ 61.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgingAlgorithmsAlzheimer&aposs DiseaseAreaBehaviorBiochemicalBiochemistryBiological ModelsBiological Neural NetworksBiologyBrainCalciumCellsChemicalsCollaborationsCommunitiesComplexComputer softwareComputing MethodologiesConsequentialismCouplingData SetDevelopmentDimensionsElectron MicroscopyElectrophysiology (science)EnvironmentEquationEquilibriumEvolutionFosteringHybridsImageInvestigationIon ChannelLearningLibrariesLightMachine LearningMemoryMethodsModelingMolecularMorphologyNational Institute of General Medical SciencesNeuronsNeuropilNeurosciencesPharmacologic SubstancePhysicsPopulationPotassium ChannelProcessPythonsReactionResearch PersonnelSleepStructureSynapsesSynaptic plasticitySystemTechniquesTimeTissuesUnited States National Institutes of HealthVertebral columnWorkage relatedbasebiological systemscalmodulin-dependent protein kinase IIcomputer studiesexperimental studyinformation processinginsightinterestmathematical methodsmen who have sex with menmicroscopic imagingmulti-scale modelingnervous system disorderparticlepostsynapticreconstructionrelating to nervous systemsimulationsoftware developmentsuccesstoolworking group
项目摘要
Project Summary/Abstract
This project develops machine learning approaches that describe statistical systems in biology. By combining
analytic results calculated from the exact probabilistic description of the system with machine learning inference,
our new methods present exciting opportunities to model previously inaccessible complex dynamics. The resulting
Boltzmann machine-like learning algorithms present a new class of modeling techniques based on the powerful in-
ference of arti cial neural networks. Further development of this approach will bring the groundbreaking advances
from the surge of recent interest in machine learning into the biological modeling eld. The mathematical methods
we develop will be used to derive e cient algorithms for multiscale simulation, directly applicable to large scale
biological modeling. In particular, the algorithms will be used to study the dynamics of stochastic biochemistry at
synapses, with direct relevance to learning and memory formation in the brain. Current studies of these processes
are limited by the long timescales involved and the highly spatially organized structures featured. In addition
to leveraging the machine learning expertise we are developing, we also employ new electron microscopy datasets
to produce 3D reconstructions of neural tissue with unprecedented accuracy. Consequentially, we will be able to
study the fundamental mechanisms underlying synaptic plasticity, as well as the biochemical basis of oscillatory
behavior in networks of neurons that occurs during sleep. Furthermore, the interactions of these highly stochastic
ion channels with electrical in neurons will be explored through groundbreaking hybrid simulation environments.
The software that we will develop combines existing popular simulation tools into multiscale approaches, and will
be distributed as a powerful tool to the broader biological modeling community. Its usage in further computational
experiments can present a key advancement in the development of pharmaceuticals, allowing the direct study of
the interactions of biochemistry and whole neuron electrophysiology without making limiting assumptions to sim-
plify the simulations. This has promising implications for intervening in age-related learning de cits, as well as
in neurological disorders such as Alzheimers. Finally, this proposal will bring together our existing multiscale
modeling community, the National Center for Multi-scale Modeling of Biological Systems (MMBioS), with the
MSM consortium. The interactions of these organizations and their communities of expert researchers will foster
new collaborative work on exciting multiscale problems in biology, including applications of the machine learning
frameworks and software we are developing.
1
项目总结/摘要
该项目开发描述生物学中统计系统的机器学习方法。通过组合
通过机器学习推理从系统的精确概率描述计算的分析结果,
我们的新方法提供了令人兴奋的机会来模拟以前无法实现的复杂动力学。所得
玻尔兹曼类机学习算法提出了一类新的建模技术的基础上,强大的内,
阿尔蒂神经网络。这种方法的进一步发展将带来突破性的进展,
从最近对机器学习的兴趣激增到生物建模领域。的数学方法
我们开发的算法将用于多尺度模拟,直接适用于大规模
生物建模特别是,该算法将用于研究随机生物化学的动力学,
突触,与大脑中的学习和记忆形成直接相关。目前对这些过程的研究
受到所涉及的长时间尺度和高度空间组织结构的限制。此外
为了利用我们正在开发的机器学习专业知识,我们还采用了新的电子显微镜数据集,
以前所未有的精确度对神经组织进行3D重建。因此,我们将能够
研究突触可塑性的基本机制,以及振荡的生化基础。
神经元网络在睡眠期间的行为。此外,这些高度随机的相互作用
将通过开创性的混合模拟环境探索神经元中的电离子通道。
我们将开发的软件将现有的流行模拟工具结合到多尺度方法中,
作为一个强大的工具分发给更广泛的生物建模社区。它在进一步计算中的应用
实验可以在药物开发方面取得关键进展,允许直接研究
生物化学和整个神经元电生理学的相互作用,而不对模拟进行限制性假设,
简化模拟。这对干预与年龄相关的学习缺陷以及
神经系统疾病如老年痴呆症最后,这项提案将把我们现有的多尺度
国家生物系统多尺度建模中心(MMBioS),
MSM联盟。这些组织及其专家研究人员社区的互动将促进
关于生物学中令人兴奋的多尺度问题的新合作工作,包括机器学习的应用
我们正在开发的框架和软件。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC D MJOLSNESS其他文献
ERIC D MJOLSNESS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC D MJOLSNESS', 18)}}的其他基金
Multiscale theory of synapse function with model reduction by machine learning
通过机器学习进行模型简化的突触功能多尺度理论
- 批准号:
10263653 - 财政年份:2021
- 资助金额:
$ 61.91万 - 项目类别:
A signal transduction pathway database/modeling system
信号转导通路数据库/建模系统
- 批准号:
6942696 - 财政年份:2003
- 资助金额:
$ 61.91万 - 项目类别:
A signal transduction pathway database/modeling system
信号转导通路数据库/建模系统
- 批准号:
6688807 - 财政年份:2003
- 资助金额:
$ 61.91万 - 项目类别:
A signal transduction pathway database/modeling system
信号转导通路数据库/建模系统
- 批准号:
6798470 - 财政年份:2003
- 资助金额:
$ 61.91万 - 项目类别:
A signal transduction pathway database/modeling system
信号转导通路数据库/建模系统
- 批准号:
7115666 - 财政年份:2003
- 资助金额:
$ 61.91万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 61.91万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 61.91万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 61.91万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 61.91万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 61.91万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 61.91万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 61.91万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 61.91万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 61.91万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 61.91万 - 项目类别:
Research Grant














{{item.name}}会员




