Multiscale theory of synapse function with model reduction by machine learning
通过机器学习进行模型简化的突触功能多尺度理论
基本信息
- 批准号:10263653
- 负责人:
- 金额:$ 113.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAgingAlgorithmsAlzheimer&aposs DiseaseAstrocytesBiochemistryBrainCalciumCalcium OscillationsCalcium SignalingCollaborationsCommunitiesComputer softwareCytoskeletonDataDendritic SpinesDevelopmentDockingEnsureEventFutureGoalsGraphGrowthHeadImageLearningLibrariesLinkMachine LearningMemoryMethodsModelingModernizationMolecularMorphogenesisMotivationNeurosciencesPharmacologic SubstancePhysicsPreparationProcessProteinsReactionReproducibilityResearch PersonnelResolutionShapesSignal PathwaySoftware ToolsStructureSynapsesSystemTimeVertebral columnWorkbasecalmodulin-dependent protein kinase IIcomputational neurosciencedata sharingdata toolsinteroperabilitymachine learning algorithmmachine learning methodmulti-scale modelingnanonervous system disorderopen sourceparticlereconstructionsharing platformsimulationspatiotemporalsuccesssynaptic functiontheoriestool
项目摘要
Project Summary/Abstract
This project constructs a unifying model that links synaptic morphodynamics, the fundamental process of
learning and memory in the brain, to the underlying molecular signaling pathways that regulate it. The motivation
for this work is a new class of machine learning methods for multiscale modeling that are a promising candidate
for linking the disparate spatial and temporal scales involved, from s calcium events in nano-domains to actin
reorganization on the order of minutes across a dendritic spine head. Previously, it has only been possible to study
each of these scales in isolation. The project brings together experts in (1) modeling the biochemistry at synapses,
(2) modeling the growth of the actin cytoskeleton, and (3) developing the theory and algorithms of multiscale
modeling with machine learning. The result of this collaboration will be a milestone model in cellular neuroscience
that mechanistically connects calcium signaling in dendritic spines to the growth of the actin cytoskeleton in spine
remodeling. Currently, there are few models that can e ectively make predictions about actin structure formation
based on changes in calcium in ux into the post-synaptic spine. Since the new data-driven models will be more
computationally ecient than exact simulations, it will also be possible to incorporate them into coarse-scale
models of synapses used in network simulations and in neuroengineering applications. Additionally, the methods
developed in this work an important contribution to modeling in cellular neuroscience, particularly because they
are data-driven and therefore widely applicable. Finally, the development of a suite of software tools for multiscale
modeling with machine learning will catalyze future collaborations and scienti c developments in the neuroscience
community, particularly using models that aim to connect cellular phenomena with mechanisms at sub-second
resolution. Such models can potentially bene t the development of pharmaceutical targets for learning de cits
associated with aging and neurological disorders such as Alzheimers.
项目概要/摘要
该项目构建了一个连接突触形态动力学的统一模型,突触形态动力学是突触形态动力学的基本过程。
大脑中的学习和记忆,以及调节它的潜在分子信号传导途径。动机
这项工作是一类用于多尺度建模的新型机器学习方法,是一个有前途的候选方法
用于连接所涉及的不同空间和时间尺度,从纳米域中的钙事件到肌动蛋白
整个树突棘头部的重组大约需要几分钟。以前只能学习
这些尺度中的每一个都是孤立的。该项目汇集了以下方面的专家:(1) 模拟突触的生物化学,
(2) 模拟肌动蛋白细胞骨架的生长,(3) 开发多尺度的理论和算法
使用机器学习进行建模。此次合作的成果将成为细胞神经科学的里程碑模型
机械地将树突棘中的钙信号传导与树突棘中肌动蛋白细胞骨架的生长联系起来
重塑。目前,能够有效预测肌动蛋白结构形成的模型还很少
基于进入突触后脊柱的钙的变化。由于新的数据驱动模型将更加
计算效率比精确模拟高,也可以将它们合并到粗尺度中
用于网络模拟和神经工程应用的突触模型。此外,方法
这项工作对细胞神经科学建模做出了重要贡献,特别是因为它们
是数据驱动的,因此广泛适用。最后,开发了一套用于多尺度的软件工具
机器学习建模将促进神经科学领域未来的合作和科学发展
社区,特别是使用旨在将细胞现象与亚秒级机制联系起来的模型
解决。这种模型可能有利于学习缺陷药物靶标的开发
与衰老和阿尔茨海默氏症等神经系统疾病有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ERIC D MJOLSNESS其他文献
ERIC D MJOLSNESS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ERIC D MJOLSNESS', 18)}}的其他基金
Machine Learning for Generalized Multiscale Modeling
用于广义多尺度建模的机器学习
- 批准号:
9791802 - 财政年份:2018
- 资助金额:
$ 113.46万 - 项目类别:
A signal transduction pathway database/modeling system
信号转导通路数据库/建模系统
- 批准号:
6942696 - 财政年份:2003
- 资助金额:
$ 113.46万 - 项目类别:
A signal transduction pathway database/modeling system
信号转导通路数据库/建模系统
- 批准号:
6688807 - 财政年份:2003
- 资助金额:
$ 113.46万 - 项目类别:
A signal transduction pathway database/modeling system
信号转导通路数据库/建模系统
- 批准号:
6798470 - 财政年份:2003
- 资助金额:
$ 113.46万 - 项目类别:
A signal transduction pathway database/modeling system
信号转导通路数据库/建模系统
- 批准号:
7115666 - 财政年份:2003
- 资助金额:
$ 113.46万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 113.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 113.46万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 113.46万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 113.46万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 113.46万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 113.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 113.46万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 113.46万 - 项目类别:














{{item.name}}会员




