Investigating the role of extremely long-lived mitochondrial proteins in mammalian neurons

研究极长寿命线粒体蛋白在哺乳动物神经元中的作用

基本信息

项目摘要

Mitochondria are dynamic multifunctional organelles that play pivotal biochemical roles in cell's homeostasis and survival. In addition to generating ATP, mitochondria are also important for Ca2+ signaling, neurotransmitter metabolism, and reactive oxygen species (ROS) signaling. Mitochondrial dysfunctions represent a point of convergence for almost all major neurodegenerative disorders, as well as cases of bioenergetics failures, such as ischemia-reperfusion injury, trauma, and toxic exposures. Yet, the exact mechanisms via which dysfunctional mitochondria contribute to the pathology of these conditions remains unknown. In order to maintain homeostasis and minimize the effect of damaged proteins and organelles, the cellular proteome is constantly degraded to make way for the new versions. Post-mitotic long-lived cells, such as neurons, are particularly sensitive to these processes since they cannot dilute the macromolecular damage though cell division. However, in our previous research we identified intracellular proteins in the brain with exceptionally long-life spans that we termed extremely long-lived proteins (ELLPs). Due to their persistence, ELLPs are likely to accumulate damage over longer periods and thus create a previously discounted layer of cell's vulnerability. Intriguingly, we found that a small subset of brain's mitochondrial proteome is also long-lived and persists for the entire lifetime of a mouse. We hypothesize that these newly identified mitochondrial ELLPs (mito-ELLPs) play an underappreciated role in the processes of neurodegeneration and cell's response to stress and injury. The goal of this research proposal is to identify and characterize mitochondrial ELLPs in mammalian neurons. Using metabolic stable isotope pulse-chase labelling, together with high-resolution shotgun mass spectrometry (MS)-based proteomic analysis, and custom bioinformatics strategies, we will define the mitochondrial long-lived proteome in mouse brain extracts and primary neuron cultures. Furthermore, we will determine whether mito-ELLPs localize preferentially to damaged, unfit, or aged mitochondria by combining advanced live cell fluorescent techniques and organelle sorting. We will further delineate subcellular localization of mito-ELLPs by co-localization studies using markers of synapses, ER, MAMs, and mtDNA translation. Lastly, we will investigate whether pharmacological treatments known to affect mitochondrial function affect the long- lived proteome. Insights from these experiments will significantly advance our understanding of the role of mito- ELLPs in neurons and could lead to new targets for potential therapeutic interventions for a myriad of neurological disorders.
线粒体是动态的多功能细胞器,在细胞的稳态和生存中发挥着关键的生化作用。除了产生 ATP 之外,线粒体对于 Ca2+ 信号传导、神经递质代谢和活性氧 (ROS) 信号传导也很重要。线粒体功能障碍代表了几乎所有主要神经退行性疾病以及生物能学失败的病例,例如缺血再灌注损伤、创伤和有毒物质暴露。然而,线粒体功能障碍导致这些病症病理的确切机制仍然未知。为了维持体内平衡并尽量减少受损蛋白质和细胞器的影响,细胞蛋白质组不断降解,为新版本让路。有丝分裂后的长寿细胞,例如神经元,对这些过程特别敏感,因为它们无法通过细胞分裂来稀释大分子损伤。然而,在我们之前的研究中,我们发现大脑中的细胞内蛋白质具有极长的寿命,我们将其称为极长寿命蛋白质(ELLP)。由于其持久性,ELLP 可能会在较长时间内累积损伤,从而形成先前被低估的细胞脆弱层。有趣的是,我们发现大脑线粒体蛋白质组的一小部分也很长寿,并且在小鼠的整个生命周期中持续存在。我们假设这些新发现的线粒体 ELLP (mito-ELLP) 在神经退行性变以及细胞对应激和损伤的反应过程中发挥着未被充分认识的作用。 本研究计划的目标是鉴定和表征哺乳动物神经元中的线粒体 ELLP。使用代谢稳定同位素脉冲追踪标记,结合基于高分辨率鸟枪质谱 (MS) 的蛋白质组分析和定制生物信息学策略,我们将定义小鼠大脑提取物和原代神经元培养物中的线粒体长寿命蛋白质组。此外,我们将通过结合先进的活细胞荧光技术和细胞器分选来确定 mito-ELLP 是否优先定位于受损、不健康或老化的线粒体。我们将通过使用突触、ER、MAM 和 mtDNA 翻译标记的共定位研究,进一步描述 mito-ELLP 的亚细胞定位。最后,我们将研究已知影响线粒体功能的药物治疗是否会影响长寿的蛋白质组。这些实验的见解将显着增进我们对 mito-ELLP 在神经元中的作用的理解,并可能为多种神经系统疾病的潜在治疗干预找到新的靶点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ewa Karolina Bomba-Warczak其他文献

Ewa Karolina Bomba-Warczak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ewa Karolina Bomba-Warczak', 18)}}的其他基金

Mitochondrial Fidelity in Mammalian Neurons
哺乳动物神经元的线粒体保真度
  • 批准号:
    10592168
  • 财政年份:
    2023
  • 资助金额:
    $ 5.87万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了