Engineered B Cells as a Universal Platform for the Treatment of Enzymopathies
工程 B 细胞作为治疗酶病的通用平台
基本信息
- 批准号:10358566
- 负责人:
- 金额:$ 38.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnimal ModelAnimalsAntibodiesAntibody-Producing CellsAntigensAutomobile DrivingB cell therapyB-Cell DevelopmentB-LymphocytesBackBlood CellsBone Marrow TransplantationCD34 geneCRISPR/Cas technologyCardiopulmonaryCell LineCell TherapyCell TransplantationCell modelCellsCessation of lifeComplementary DNACorneaDNA cassetteDefectDevelopmentDiseaseDisease modelEffectivenessEmu speciesEngineeringEngraftmentEnhancersEnzymesFutureGAG GeneGene DeliveryGene ExpressionGenesGeneticGenetic DiseasesGenetic TranscriptionGenome engineeringGlycosaminoglycansGoalsHematopoietic Stem Cell TransplantationHematopoietic stem cellsHepatosplenomegalyHumanHuman EngineeringImmunizationImmunosuppressionImpairmentIn VitroIndividualInfectionInternetKnock-inKnock-outL-IduronidaseLifeLinkLymphocyteLysosomal Storage DiseasesMedicalMemory B-LymphocyteMetabolicMethodsModelingMorbidity - disease rateMucopolysaccharidosis IMucopolysaccharidosis I HMusNational Institute of Allergy and Infectious DiseaseNeurologicObstructionPathologyPatientsPhycoerythrinPhysiciansPlasma CellsPre-Clinical ModelPreclinical TestingProcessProductionProteinsReagentRecombinant adeno-associated virus (rAAV)RegimenResearch PersonnelRiskSerotypingSignal TransductionSiteSpecificitySystemT-LymphocyteT-Lymphocyte SubsetsTechnologyTestingTherapeuticTransplantationUrineWorkbasebiological researchcancer cellcancer immunotherapycell typecellular engineeringcostenzyme deficiencyenzyme replacement therapyexperimental studyexpression vectorgene therapygenome editinggraft vs host diseasein vivoin vivo evaluationinsightintegration sitemouse modelnovel therapeuticsoverexpressionpreconditioningpromoterpublic health relevanceskeletal dysplasiasuccesstherapeutic transgenetransgene expressiontreatment group
项目摘要
ABSTRACT: Enzymopathies are a disturbance of enzyme function, including genetic deficiency or a defect in
specific enzymes. Current treatment methods are insufficient and rely on hematopoietic stem cell transplant
(HSCT) or lifelong enzyme replacement therapy (ERT). ERT can cost hundreds of thousands of dollars per year
and HSCTs are highly precarious, with a subset resulting in death from graft versus host disease or infection
brought on by prolonged immunosuppression. An alternative approach would be to modify a patients more
malleable and accessible cells, such as lymphocytes, to express large quantities of active enzyme and re-infuse
these cells into the patient to produce the lacking enzyme. This excess enzyme can be excreted from engineered
cells in vivo and taken up by endogenous cells, a process termed cross correction. Recently, there has been a
large amount of work on genome engineering of human T cells, typically for cancer immunotherapies. However,
the subsets of T cells that are long-lived are metabolically inactive and not ideal for constant protein production.
Conversely, B cells can generate large amounts of protective antibodies and continue to do so for years after
conversion to long-lived plasma cells. It has been demonstrated that these plasma cells are not merely re-seeded
by memory B cells but instead are the result of becoming long-lived antibody producing cells that do not
proliferate. The fact that B cells can become long lived and inherently have the metabolic activity to generate
large quantities of protein (i.e. antibody) led us to hypothesize that these cells might be an ideal platform for gene
therapy of enzymopathies. To enable the use of engineered B cells for therapy we recently established the use
of CRISPR/Cas9 for gene knock-in and knockout in primary human B cells (Johnson et. al., Sci Rep. 2018 Aug
14;8(1):12144). Now, we will apply these approaches to engineer B cells for the treatment of enzymopathies and
perform preclinical testing. Here, we propose to: 1) optimize expression vectors and integration sites for optimal
expression of therapeutic transgenes in human B cells and 2) perform proof-of-concept studies to use
engineered human B cells to treat enzymopathies. Specifically, we will treat a mouse model of
mucopolysaccharidosis type I (MPS I) on a NOD/SCID/Il2rγ background by transplantation of engineered human
B cells. MPS I is an autosomal recessive lysosomal disease caused by deficiency of alpha-L-iduronidase (IDUA)
enzyme resulting in accumulation of glycosaminoglycan storage material and multi-systemic disease. Affected
individuals suffer from hepatosplenomegaly, corneal clouding, skeletal dysplasias, cardiopulmonary obstruction,
and in the severe form (Hurler syndrome) progressive neurologic impairment. B cells will be engineered to
express a BCR of known antigen specificity transcriptionally linked to IDUA with subsequent immunization to
generate long lived plasma cells in vivo. The studies proposed in this R01 application thus constitute a
comprehensive analysis of the use of engineered B cells to treat enzymopathies with the ultimate goal of treating
enzymopathies in humans.
摘要:酶病是一种酶功能紊乱,包括遗传缺陷或
特定的酶。目前的治疗方法不足,依赖造血干细胞移植
(HSCT)或终身酶替代疗法(ERT)。ERT每年可能花费数十万美元
和HSCT是高度不稳定的,其中一个亚组导致移植物抗宿主病或感染死亡
长期免疫抑制导致的另一种方法是对患者进行更多的修改
可塑性和可接近的细胞,如淋巴细胞,表达大量的活性酶并重新注入
这些细胞进入患者体内以产生缺乏的酶。这种多余的酶可以从工程化的
细胞在体内并被内源性细胞吸收,这一过程称为交叉校正。最近,有一个
在人类T细胞的基因组工程方面的大量工作,通常用于癌症免疫疗法。然而,在这方面,
长寿命的T细胞亚群在代谢上是无活性的,并且对于恒定的蛋白质产生不是理想的。
相反,B细胞可以产生大量的保护性抗体,并在感染后持续多年。
转化为长寿的浆细胞。事实证明,这些浆细胞不仅仅是重新接种
而是成为长寿的抗体B细胞的结果,
增殖。事实上,B细胞可以变得长寿,并且固有地具有代谢活性,
大量的蛋白质(即抗体)使我们假设这些细胞可能是基因表达的理想平台。
酶病的治疗。为了使工程改造的B细胞能够用于治疗,我们最近建立了使用
用于在原代人B细胞中基因敲入和敲除的CRISPR/Cas9(约翰逊(Johnson)et.例如,科学报告2018年8月
14;8(1):12144)。现在,我们将应用这些方法来改造B细胞,用于治疗酶病,
进行临床前试验。在这里,我们建议:1)优化表达载体和整合位点,以获得最佳的
治疗性转基因在人B细胞中的表达和2)进行概念验证研究以使用
工程改造的人类B细胞来治疗酶病。具体来说,我们将治疗一个小鼠模型,
在NOD/SCID/IL 2 r γ背景下通过移植工程化人
B细胞。MPS I是一种由α-L-艾杜糖醛酸酶(IDUA)缺乏引起的常染色体隐性溶酶体疾病
酶导致糖胺聚糖储存物质的积累和多系统疾病。影响
个体患有肝脾肿大、角膜混浊、骨骼发育不良,心肺阻塞,
和严重形式(Hurler综合征)的进行性神经功能缺损。B细胞将被改造成
表达与IDUA转录连接的已知抗原特异性的BCR,随后免疫,
在体内产生长寿命的浆细胞。因此,本R 01申请中提出的研究构成了
全面分析了使用工程化B细胞治疗酶病的最终目的是治疗
人类的酶病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Branden S Moriarity其他文献
Targeting the intracellular immune checkpoint CISH with CRISPR-Cas9-edited T cells in patients with metastatic colorectal cancer: a first-in-human, single-centre, phase 1 trial
在转移性结直肠癌患者中使用 CRISPR-Cas9 编辑的 T 细胞靶向细胞内免疫检查点 CISH:一项首次人体、单中心、1 期试验
- DOI:
10.1016/s1470-2045(25)00083-x - 发表时间:
2025-05-01 - 期刊:
- 影响因子:35.900
- 作者:
Emil Lou;Modassir S Choudhry;Timothy K Starr;Timothy D Folsom;Jason Bell;Blaine Rathmann;Anthony P DeFeo;Jihyun Kim;Nicholas Slipek;Zhaohui Jin;Darin Sumstad;Christopher A Klebanoff;Katherine Ladner;Akshat Sarkari;R Scott McIvor;Thomas A Murray;Jeffrey S Miller;Madhuri Rao;Eric Jensen;Jacob Ankeny;Branden S Moriarity - 通讯作者:
Branden S Moriarity
<em>In Vivo</em> Correction of a Genetically Humanized Fanconi Anemia Mouse Bone Marrow Failure Model Using Digital Editing Technologies
- DOI:
10.1182/blood-2024-210783 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Branden S Moriarity;Beau R Webber;Colette B Rogers;John E Wagner;Joseph J Peterson;Cassandra Butterbaugh;Paige Carlson - 通讯作者:
Paige Carlson
emIn Vivo/em Correction of a Genetically Humanized Fanconi Anemia Mouse Bone Marrow Failure Model Using Digital Editing Technologies
使用数字编辑技术在体内校正遗传人源化范可尼贫血小鼠骨髓衰竭模型
- DOI:
10.1182/blood-2024-210783 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:23.100
- 作者:
Branden S Moriarity;Beau R Webber;Colette B Rogers;John E Wagner;Joseph J Peterson;Cassandra Butterbaugh;Paige Carlson - 通讯作者:
Paige Carlson
FAS Ablation Confers Resistance to Allogeneic CAR-T Rejection By T Cells in Absence of NK Cell Sensitization
- DOI:
10.1182/blood-2024-207581 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Silvia Menegatti;Sheila Lopez-Cobo;Aurelien Sutra Del Galy;Jaime Fuentealba;Lisseth Silva;Laeticia Perrin;Sandrine Heurtebise-Chrétien;Valentine Pottez-Jouatte;Aurélie Darbois;Nina Burgdorf;Albane Simon;Marguerite Laprie-Santenac;Michael Saitakis;Bruce Wick;Beau R Webber;Branden S Moriarity;Olivier Lantz;Sebastian Amigorena;Laurie Menger - 通讯作者:
Laurie Menger
Branden S Moriarity的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Branden S Moriarity', 18)}}的其他基金
Engineered B Cells as a Universal Platform for the Treatment of Enzymopathies
工程 B 细胞作为治疗酶病的通用平台
- 批准号:
10582595 - 财政年份:2020
- 资助金额:
$ 38.75万 - 项目类别:
Optimizing Gene Editing in Primary Human B Cells for Therapy and Research
优化人类原代 B 细胞中的基因编辑以用于治疗和研究
- 批准号:
9224508 - 财政年份:2017
- 资助金额:
$ 38.75万 - 项目类别:
Multiplex 'Conditional' Mice for Rapid and Affordable Pre-clinical Testing
多重“条件”小鼠用于快速且经济实惠的临床前测试
- 批准号:
9195708 - 财政年份:2015
- 资助金额:
$ 38.75万 - 项目类别:
Project 4 Treatment of Advanced Ovarian Cancer Using Gene-Edited NK CAR Cells
项目4 使用基因编辑的NK CAR细胞治疗晚期卵巢癌
- 批准号:
10452722 - 财政年份:2009
- 资助金额:
$ 38.75万 - 项目类别:
Project 4 Treatment of Advanced Ovarian Cancer Using Gene-Edited NK CAR Cells
项目4 使用基因编辑的NK CAR细胞治疗晚期卵巢癌
- 批准号:
10705051 - 财政年份:2009
- 资助金额:
$ 38.75万 - 项目类别:
Project 4 Treatment of Advanced Ovarian Cancer Using Gene-Edited NK CAR Cells
项目4 使用基因编辑的NK CAR细胞治疗晚期卵巢癌
- 批准号:
10268766 - 财政年份:2009
- 资助金额:
$ 38.75万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 38.75万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 38.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




