mHealth for Heart Failure: Predictive Models of Readmission Risk and Self-care Using Consumer Activity Trackers

心力衰竭的移动医疗:使用消费者活动跟踪器预测再入院风险和自我护理模型

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Heart failure (HF) is a debilitating disease that affects over five million people in the United States. Occurrence of, morbidity related to, and hospitalization due to HF have serious financial implications. In 2012, HF had a direct cost of over $30.7 billion annually, the majority of which was due to direct medical costs. By 2030, HF total direct costs are predicted to reach $69.7 billion, an increase of 127%. Increases in costs will be driven by an increase in the aging population, making prevention of HF and care efficiency imperative. Fifty percent of readmissions due to HF are preventable, with lack of adherence to prescribed self-care as the driving factor. Results of telemedicine intervention studies to support adherence to self-care and improve HF outcomes are inconclusive. Past telemedicine interventions for HF have utilized an array of methods including: wireless sensors, telephone services, websites, and home visits from nurses. Structured telephone support has shown in some cases to reduce hospitalization, improve clinical outcomes, and reduce all-cause mortality in HF patients. However, patient participation in telemedicine interventions varies widely. This variation is due in part to the high treatment burden placed upon patients in such home monitoring interventions, which require them to engage in novel behaviors, including using new unfamiliar hardware and spending time meeting with home health nurses. The goals of this R01 are to: 1) demonstrate that patients are adherent to a home monitoring regimen when using minimally-invasive monitoring technologies, including wrist-worn consumer activity trackers; 2) combine the minimally-invasive home monitoring regimen with predictive algorithms to forecast hospital readmission; 3) develop models using electronic health record (EHR) data and a baseline survey to predict levels of adherence to the home monitoring regimen; and 4) explore the pragmatic feasibility of using a mobile app for communicating with patients in prospective pilot study. Towards these goals, we will recruit 500 HF patients to participate in a minimally-invasive home monitoring regimen. We will measure levels of adherence to the regimen, and use collected sensor data and known readmission events to create a novel hidden semi-Markov model that continuously predicts readmission risk. Predicting a patient’s level of adherence will be performed with EHR data and a baseline survey. Finally, we will develop a mobile application that will allow patients to monitor their progress and receive adherence notifications and short surveys in a pilot study of 50 patients. The work outlined in this proposal will produce a set of foundational tools for performing home monitoring of HF patients. We will discover EHR phenotypes and mobile sensor biomarkers that are predictive of readmission and adherence, which will enable a future randomized trial that precisely targets computational patient profiles with tailored incentives based on behavioral economics to reduce hospital readmission.
项目总结/摘要 心力衰竭(HF)是一种使人衰弱的疾病,在美国影响超过500万人。发生 与HF相关的发病率和因HF住院治疗具有严重的经济影响。2012年,HF有一个 每年的直接费用超过307亿美元,其中大部分是直接医疗费用。到2030年,HF 直接成本总额预计达六百九十七亿元,增幅达百分之一百二十七。成本的增加将受到以下因素的推动: 老龄化人口的增加,使得预防HF和护理效率势在必行。的百分之五十 由于HF导致的再入院是可以预防的,缺乏对规定的自我护理的依从性是驱动因素。 支持坚持自我护理和改善HF结局的远程医疗干预研究的结果如下 不确定过去对HF的远程医疗干预利用了一系列方法,包括: 传感器、电话服务、网站和护士的家访。结构化电话支持显示, 在某些情况下,可减少HF患者的住院治疗,改善临床结局,并降低全因死亡率 患者然而,患者参与远程医疗干预的情况差别很大。这种变化部分是由于 在这种家庭监测干预中给患者带来的高治疗负担,这需要他们 参与新的行为,包括使用新的不熟悉的硬件和花时间与家人会面 保健护士 本R 01的目标是:1)证明患者在以下情况下遵守家庭监测方案: 使用微创监测技术,包括腕戴式消费者活动跟踪器; 2)联合收割机 微创家庭监测方案,采用预测算法预测再入院; 3) 使用电子健康记录(EHR)数据和基线调查开发模型,以预测依从性水平 家庭监测方案;以及4)探索使用移动的应用程序进行 在前瞻性试点研究中与患者沟通。为了实现这些目标,我们将招募500名HF患者, 参与微创家庭监测方案。我们将衡量遵守 方案,并使用收集的传感器数据和已知的再入院事件来创建一个新的隐半马尔可夫 持续预测再入院风险的模型。将预测患者的依从性水平 电子健康记录数据和基线调查。最后,我们将开发一个移动的应用程序,使患者能够 在50名患者的试点研究中监测他们的进展并接收依从性通知和简短调查。 本提案中概述的工作将产生一套用于执行HF家庭监测的基础工具 患者我们将发现EHR表型和移动的传感器生物标志物,它们可以预测再入院 和坚持,这将使未来的随机试验,精确地针对计算病人的档案, 基于行为经济学的量身定制的激励措施,以减少再次入院。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessment of Heart Failure Patients' Interest in Mobile Health Apps for Self-Care: Survey Study.
  • DOI:
    10.2196/14332
  • 发表时间:
    2019-10-29
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sohn, Albert;Speier, William;Arnold, Corey
  • 通讯作者:
    Arnold, Corey
Bidirectional Representation Learning From Transformers Using Multimodal Electronic Health Record Data to Predict Depression.
HCET: Hierarchical Clinical Embedding With Topic Modeling on Electronic Health Records for Predicting Future Depression.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Corey Wells Arnold其他文献

Corey Wells Arnold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Corey Wells Arnold', 18)}}的其他基金

mHealth for Heart Failure: Predictive Models of Readmission Risk and Self-care Using Consumer Activity Trackers
心力衰竭的移动医疗:使用消费者活动跟踪器预测再入院风险和自我护理模型
  • 批准号:
    9905411
  • 财政年份:
    2019
  • 资助金额:
    $ 72.13万
  • 项目类别:
A Machine Learning Approach to Classifying Time Since Stroke using Medical Imaging
使用医学成像对中风后时间进行分类的机器学习方法
  • 批准号:
    10363751
  • 财政年份:
    2018
  • 资助金额:
    $ 72.13万
  • 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
  • 批准号:
    8919947
  • 财政年份:
    2014
  • 资助金额:
    $ 72.13万
  • 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
  • 批准号:
    8822562
  • 财政年份:
    2014
  • 资助金额:
    $ 72.13万
  • 项目类别:

相似海外基金

An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
  • 批准号:
    10057526
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
    Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
  • 批准号:
    490105
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
    Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
  • 批准号:
    2325465
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
    Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
  • 批准号:
    10821172
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
  • 批准号:
    10766947
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
  • 批准号:
    10772887
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
  • 批准号:
    10594350
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
  • 批准号:
    10748465
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
  • 批准号:
    10591441
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
  • 批准号:
    491109
  • 财政年份:
    2023
  • 资助金额:
    $ 72.13万
  • 项目类别:
    Fellowship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了