A Topic Model and Visualization for Automatic Summarization of Patient Records

用于自动汇总患者记录的主题模型和可视化

基本信息

项目摘要

DESCRIPTION (provided by applicant): Primary care physicians (PCPs) are responsible for reviewing and understanding a wide spectrum of a patient's medical history in order to make informed decisions regarding care. However, a variety of factors impede this process, including: the increasing complexity and number of diagnostic tests and treatments, health information exchange standards that may add more information to the medical record, and the need to efficiently see more patients in less time. These obstructions can lead to an inhibition of dialogue between patients and providers, and possibly even medical errors. New methods are required to help expedite a healthcare provider's understanding of a patient's medical history, summarizing key information. The use of topic models for summarizing large, unstructured data collections is a growing area of research. However, to date little work has been done on adapting these models to the clinical reporting environment. This proposal seeks to develop a topic model and ensuing visualization system for automatically summarizing medical records to support PCPs. Two specific aims guide the proposed work: 1) to create a topic model of free-text clinical documents that integrates contextual patient- and document-level data, and discovers multi-word concepts; and 2) to utilize the proposed model to drive a web application that includes concept-, source-, and time-oriented views for automatically summarizing patient records. The proposed model's innovation is that it is uniquely adapted to clinical records by the incorporation of demographic and discrete data (e.g., lab results), which influences the discovery of topics in documents and allows for adaptation to each patient's specific history. As a test bed for this project, we will gather medical records coded with myocardial infarction (MI), breast cancer, or liver cirrhosis, as these patients will span a spectrum of clinical complexity. We estimate that 68,539 patient records will be included in this study. The developed topic model will be integrated into a web-based visualization that displays clinically pertinent topics over time, as well as other relevant clinical data. This visualization will be evaluated by PCPs to gauge its utility to support the review of medical histories. This R21 proposal breaks new ground in the use of topic models for clinical data, and will provide future avenues of research in new applications of the proposed model.
描述(由申请人提供):初级保健医生(pcp)负责审查和了解患者的广泛病史,以便在护理方面做出明智的决定。然而,各种因素阻碍了这一进程,包括:诊断测试和治疗的复杂性和数量日益增加,可能向医疗记录添加更多信息的健康信息交换标准,以及需要在更短的时间内有效地看更多的病人。这些障碍可能导致患者和提供者之间的对话受到抑制,甚至可能导致医疗错误。需要新的方法来帮助加快医疗保健提供者对患者病史的理解,总结关键信息。使用主题模型来总结大型非结构化数据集是一个不断发展的研究领域。然而,迄今为止,在使这些模型适应临床报告环境方面所做的工作很少。本提案旨在开发一个主题模型和后续的可视化系统,用于自动汇总医疗记录,以支持pcp。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using phrases and document metadata to improve topic modeling of clinical reports.
  • DOI:
    10.1016/j.jbi.2016.04.005
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Speier W;Ong MK;Arnold CW
  • 通讯作者:
    Arnold CW
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Corey Wells Arnold其他文献

Corey Wells Arnold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Corey Wells Arnold', 18)}}的其他基金

mHealth for Heart Failure: Predictive Models of Readmission Risk and Self-care Using Consumer Activity Trackers
心力衰竭的移动医疗:使用消费者活动跟踪器预测再入院风险和自我护理模型
  • 批准号:
    10358621
  • 财政年份:
    2019
  • 资助金额:
    $ 16.11万
  • 项目类别:
mHealth for Heart Failure: Predictive Models of Readmission Risk and Self-care Using Consumer Activity Trackers
心力衰竭的移动医疗:使用消费者活动跟踪器预测再入院风险和自我护理模型
  • 批准号:
    9905411
  • 财政年份:
    2019
  • 资助金额:
    $ 16.11万
  • 项目类别:
A Machine Learning Approach to Classifying Time Since Stroke using Medical Imaging
使用医学成像对中风后时间进行分类的机器学习方法
  • 批准号:
    10363751
  • 财政年份:
    2018
  • 资助金额:
    $ 16.11万
  • 项目类别:
A Topic Model and Visualization for Automatic Summarization of Patient Records
用于自动汇总患者记录的主题模型和可视化
  • 批准号:
    8822562
  • 财政年份:
    2014
  • 资助金额:
    $ 16.11万
  • 项目类别:

相似海外基金

Predicticting performance of carbon capture in intensified rotating packed beds using CFD
使用 CFD 预测强化旋转填充床中的碳捕获性能
  • 批准号:
    2883569
  • 财政年份:
    2023
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Studentship
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPAS-2020-00102
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Quantifying the status and success on restored native oyster Ostrea edulis beds in the Solent.
量化索伦特海峡恢复的本地牡蛎 Ostrea edulis 床的状态和成功。
  • 批准号:
    2759209
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Studentship
Efficient and well-balanced numerical methods for nonhydrostatic three-dimensional shallow flows with moving beds and boundaries
具有移动床和边界的非静水三维浅流的高效且平衡的数值方法
  • 批准号:
    RGPIN-2020-06278
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Discovery Grants Program - Individual
Energy to chemicals using direct electrical current flowing through dense beds
利用流过致密床的直接电流将能量转化为化学物质
  • 批准号:
    RGPIN-2019-03912
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Discovery Grants Program - Individual
Treatment of resected brain tumour beds using nanoparticle enhanced radiotherapy
使用纳米粒子增强放射治疗治疗切除的脑瘤床
  • 批准号:
    10032278
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Collaborative R&D
SmUPS: Smart Uninterruptable Power Suppy for Home Healthcare Virtual Beds Monitoring and Power Backup
SmUPS:用于家庭医疗保健虚拟床监控和电源备份的智能不间断电源
  • 批准号:
    10045010
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Grant for R&D
Exosome treatment-induced mechanisms in chronic wound beds - Resubmission - 1
慢性伤口床中外泌体治疗诱导的机制 - 重新提交 - 1
  • 批准号:
    10350276
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
Exosome treatment-induced mechanisms in chronic wound beds - Resubmission - 1
慢性伤口床中外泌体治疗诱导的机制 - 重新提交 - 1
  • 批准号:
    10588244
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
Research on technology to measure the condition of a wide range of river embankments and river beds in three dimensions in real time and with high accuracy
大范围河堤河床三维实时高精度测量技术研究
  • 批准号:
    22K04653
  • 财政年份:
    2022
  • 资助金额:
    $ 16.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了