Role of DNA methylation in regulating striatal molecular rhythm alterations in depression
DNA甲基化在调节抑郁症纹状体分子节律改变中的作用
基本信息
- 批准号:10348253
- 负责人:
- 金额:$ 17.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnhedoniaAntidepressive AgentsAutomobile DrivingAutopsyBehaviorBehavioralBioinformaticsBiometryBody TemperatureBrainBrain regionCessation of lifeChronicChronic stressCircadian DysregulationCircadian RhythmsCognitionCorpus striatum structureDNA MethylationDNA Modification MethylasesDNA methylation profilingDNA methyltransferase inhibitionDataDecision MakingDorsalEnvironmentEnvironmental Risk FactorEpigenetic ProcessFeedbackFundingFutureGene ExpressionGene Expression ProfileGenetic TranscriptionGoalsHormonesHourHumanIndividualLaboratoriesLeadLearningMajor Depressive DisorderMeasuresMental DepressionMental disordersMentorsMentorshipMidbrain structureModificationMolecularMotivationMultiomic DataMusNeurobiologyNucleus AccumbensPeriodicityPhasePositioning AttributePsychiatryRegulationResearchResearch PersonnelRestRodentRodent ModelRoleSleepSleep Wake CycleStressTechnical ExpertiseTestingTimeTissuesTrainingTranscriptUniversitiesVentral StriatumViralbasebrain tissuecareercareer developmentcircadiancircadian pacemakerdata integrationdepressive symptomsdisabilityepigenomeepigenomicsimaging studymouse modelmultiple omicsnew therapeutic targetprogramsputamenskillstranscriptometranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY/ABSTRACT
Major depressive disorder (MDD) is a leading global cause of disability. A prominent feature of MDD is circadian
rhythm disturbances. Recent studies have shown gene expression (GE) rhythms in the human brain using a
“time of death” analysis of postmortem (PM) brain tissue, where GE data is organized across a 24-hour clock
based on individual time of death. Using this approach, it was previously shown that MDD subjects have
disrupted GE rhythms across a number of brain regions, including the striatum. The striatum is composed of the
dorsal striatum and ventral striatum and both have been implicated in stress, anhedonia, and depression. In
preliminary studies, the candidate characterized GE rhythms and phase relationships across the human dorsal
and ventral striatum. The mechanisms driving these rhythmic patterns of GE in the striatum and the alterations
observed in MDD remain to be investigated. This K01 proposal utilizes a multi-omics approach to investigate
DNA methylation (DNAm) as a potential epigenetic mechanism by which GE rhythms are altered in depression.
Given that (1) DNAm in the striatum is strongly implicated in depression and directly influenced by stress and (2)
DNAm rhythms are correlated and time-locked to GE rhythms in the human cortex, the central hypothesis is that
striatal GE rhythm disruptions in depression are driven by chronic-stress induced alterations in DNAm rhythms.
This hypothesis will be tested by the following aims: (1) Determine rhythmic changes in DNAm in the human PM
dorsal and ventral striatum in MDD subjects; (2) Employ a multi-omics data integration approach to determine
how rhythmic changes in DNAm affect transcriptome-wide rhythms in the human PM dorsal and ventral striatum
in MDD subjects; and (3) Determine the regulation of transcriptome-wide rhythms and anhedonia-like behavior
by DNAm in the dorsal and ventral striatum in a mouse model of chronic stress. These studies are central to
understanding the mechanisms underlying circadian disruptions in MDD and may result in the discovery of novel
therapeutic targets for future treatments. To complete the proposed studies and support his career goal of
establishing an independent laboratory to study the epigenetic mechanisms driving circadian rhythm disruptions
in depression, the candidate will require mentored training in: (1) developing conceptual and technical expertise
in the use of rodent models and human PM brain tissue to study the neurobiology of depression; (2) developing
conceptual and technical expertise in the field of epigenetics; and (3) learning advanced biostatistics and
bioinformatics skills to integrate circadian analyses of transcriptomics and epigenomics data. To achieve these
training goals, the candidate has assembled a mentorship team with extensive expertise in the neurobiology of
depression, epigenetics, and biostatistics. The Department of Psychiatry at the University of Pittsburgh offers a
well-funded environment with exceptional career development opportunities to become a successful
independent investigator. At completion of this proposal, the candidate will be uniquely positioned to lead his
own research program studying the epigenetic mechanisms driving circadian rhythm disruptions in depression.
项目摘要/摘要
重度抑郁症(MDD)是全球残疾的主要原因。 MDD的重要特征是昼夜节律
节奏疾病。最近的研究表明,使用A的基因表达(GE)节奏
验尸(PM)脑组织的“死亡时间”分析,其中GE数据在24小时的时钟上组织
基于个人死亡时间。使用这种方法,以前证明MDD受试者具有
包括纹状体在内的许多大脑区域中破坏了GE节奏。纹状体由
背侧纹状体和腹侧纹状体都暗示着压力,抗抗抑郁症和抑郁症。
初步研究,候选人表征了人类背侧的GE节奏和相位关系
和腹纹状体。驱动纹状体中GE的节奏模式的机制和改变
在MDD中观察到的仍有待研究。该K01提案利用多摩学方法来调查
DNA甲基化(DNAM)是抑郁症中GE节奏的潜在表观遗传机制。
鉴于(1)纹状体中的dnam在抑郁症中很大,直接受压力影响,(2)
DNAM的节奏相关并与人类皮质中的GE节奏相关,中心假设是
抑郁症的纹状体GE节律破坏是由DNAM节奏的长期压力诱发的改变驱动的。
该假设将通过以下目的检验:(1)确定人类PM中DNAM的节奏变化
MDD受试者的背侧和腹侧纹状体; (2)采用多摩斯数据集成方法来确定
DNAM的节奏变化如何影响人类PM背和腹侧纹状体的整个转录组的节奏
在MDD主题中; (3)确定整个转录组的节奏和类似于Anhedonia的行为的调节
在慢性应激的小鼠模型中,通过DNAM在背侧和腹侧纹状体中。这些研究是
了解MDD中昼夜节律破坏的基础机制,并可能导致新颖的发现
将来治疗的治疗靶标。完成拟议的研究并支持他的职业目标
建立一个独立的实验室来研究驱动昼夜节律破坏的表观遗传机制
在抑郁症中,候选人将需要培训:(1)发展概念和技术专长
在使用啮齿动物模型和人类PM脑组织来研究抑郁症的神经生物学; (2)发展
表观遗传学领域的概念和技术专长; (3)学习高级生物统计学和
生物信息学技能以整合转录组学和表观基因组学数据的昼夜节律分析。实现这些
培训目标,候选人组建了一个心态团队,该团队在神经生物学方面具有广泛的专业知识
抑郁症,表观遗传学和生物统计学。匹兹堡大学精神病学系提供
资金充足的环境,具有出色的职业发展机会,成为成功的环境
独立研究者。完成此提案后,候选人将被唯一地定位
自己的研究计划研究了抑郁症中昼夜节律中断的表观遗传机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyle Ketchesin其他文献
Kyle Ketchesin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyle Ketchesin', 18)}}的其他基金
Role of Cell Type-Specific Molecular Rhythm Disruption in Alcohol Use Disorder
细胞类型特异性分子节律破坏在酒精使用障碍中的作用
- 批准号:
10725280 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别:
Role of DNA methylation in regulating striatal molecular rhythm alterations in depression
DNA甲基化在调节抑郁症纹状体分子节律改变中的作用
- 批准号:
10487586 - 财政年份:2021
- 资助金额:
$ 17.47万 - 项目类别:
Role of DNA methylation in regulating striatal molecular rhythm alterations in depression
DNA甲基化在调节抑郁症纹状体分子节律改变中的作用
- 批准号:
10686237 - 财政年份:2021
- 资助金额:
$ 17.47万 - 项目类别:
相似海外基金
Confirmatory Efficacy Clinical Trial of Amygdala Neurofeedback for Depression
杏仁核神经反馈治疗抑郁症的疗效临床试验
- 批准号:
10633760 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别:
Development of brain-penetrant COMT inhibitors for the treatment of depressive disorders
开发用于治疗抑郁症的脑渗透性 COMT 抑制剂
- 批准号:
10696272 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别:
Serotonergic modulation of the circuits and cell-types of the lateral habenula
外侧缰核电路和细胞类型的血清素调节
- 批准号:
10713125 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别:
Mapping links between real-world diversity, positive emotion, and neural dynamics in anhedonia
映射现实世界多样性、积极情绪和快感缺失的神经动力学之间的联系
- 批准号:
10716446 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别:
Biochemical Studies Underlying Acute Ethanol's Antidepressant-like effects during Withdrawal in a Preclinical Model of Ethanol Dependence
乙醇依赖临床前模型中戒断期间乙醇急性抗抑郁样作用的生化研究
- 批准号:
10595193 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别: