Editing CG and non-CG DNA methylation to identify genomic elements that regulate gene expression
编辑 CG 和非 CG DNA 甲基化以识别调节基因表达的基因组元件
基本信息
- 批准号:10346389
- 负责人:
- 金额:$ 40.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBiologyBrainCRISPR screenCell divisionCellsChimeric ProteinsChromosomesClustered Regularly Interspaced Short Palindromic RepeatsCodeCommunitiesCorrelative StudyCpG IslandsDNADNA MethylationDNA Methylation RegulationDNA SequenceDepositionDevelopmentDiseaseElementsEnhancersEpigenetic ProcessGene ExpressionGene Expression ProfileGene Expression RegulationGene SilencingGenesGenetic Enhancer ElementGenetic TranscriptionGenomeGenomic approachGenomicsGenotypeGoalsHistonesHumanHuman BiologyHuman ChromosomesHuman GenomeHuman Genome ProjectMapsMeasuresMethodsMethylationModelingNamesNeuronsNucleic Acid Regulatory SequencesOutcome MeasurePhenotypePluripotent Stem CellsProteinsRegulationRegulator GenesRegulatory ElementResearchResolutionResourcesSequence-Specific DNA Binding ProteinSpecific qualifier valueTechnologyTestingTissue-Specific Gene ExpressionUntranslated RNAWritingbasebiomedical scientistcell typecombinatorialepigenetic memoryepigenome editingexperimental studyfunctional genomicsgene repressiongenetic regulatory proteinhistone modificationhuman diseasehuman pluripotent stem cellinduced pluripotent stem cellprogramspromoterstem cell differentiationstem cellstooltranscription factortranscriptome
项目摘要
PROJECT SUMMARY / ABSTRACT
A long-standing goal in biology is to define the relationship between genotype and phenotype. A major
surprise of the human genome project was that the human genome encodes so few genes despite the
complexity of cell types that compose for example, the human brain. As such it is assumed that
combinatorial gene expression programs are key for specifying the function of specialized cell types such
as neurons. Cell type specific gene expression programs therefore must be encoded by cis- and trans-
non-coding regulatory DNA elements whose function is regulated by the epigenetic code and key proteins
such as transcription factors. Elucidating how non-coding regulatory elements function to program cells will
transform our understanding of human biology, development and disease.
CRISPR/dCas9 technologies enable us to move beyond correlative studies, by editing the epigenome and
determining the direct effect of epigenetic alterations on gene expression. We have created a new
epigenetic editing functional genomics approach that we have named CRISPRoff. CRISPRoff robustly and
specifically writes CpG DNA methylation (5mC) and repressive histone modifications to target loci. We are
proposing to use CRISPRoff to map all genomic regulatory elements that are regulated by 5mC across an
entire human chromosome. In the proposed experiments we will use perturb-seq, which combines pooled
CRISPR screens with a single cell transcriptome readout, to directly measure how deposition of 5mC by
CRISPRoff across an entire chromosome modulates gene expression. This approach will identify genetic
regulatory elements key for induced pluripotent stem cells and neurons, a key step to understanding how
tissue-specific gene expression is controlled. Our proposed research will serve to demonstrate the utility of
this approach and motivate extending this approach to map gene regulatory elements across the entire
human genome. The results of the proposed research will serve as a fundamental resource and roadmap
for a broad community of biomedical scientists and greatly inform our understanding of human biology and
disease.
项目总结/摘要
生物学的一个长期目标是定义基因型和表型之间的关系。一个主要
令人惊讶的是,人类基因组编码的基因如此之少,尽管
复杂的细胞类型,例如,组成人类大脑。因此,假设
组合基因表达程序是指定特定细胞类型功能的关键,
神经元。因此,细胞类型特异性基因表达程序必须由顺式和反式编码。
非编码调控DNA元件,其功能由表观遗传密码和关键蛋白质调控
例如转录因子。阐明非编码调控元件如何对细胞进行编程将
改变我们对人类生物学、发育和疾病的理解。
CRISPR/dCas 9技术使我们能够超越相关研究,通过编辑表观基因组,
确定表观遗传改变对基因表达的直接影响。我们创造了一种新
表观遗传编辑功能基因组学方法,我们命名为CRISPRoff。CRISPRoff稳健,
专门写CpG DNA甲基化(5 mC)和抑制性组蛋白修饰的目标基因座。我们
建议使用CRISPRoff来绘制所有由5 mC调控的基因组调控元件,
整个人类染色体在拟议的实验中,我们将使用扰动序列,它结合了池化的
CRISPR使用单细胞转录组读数进行筛选,以直接测量5 mC如何沉积。
整个染色体上的CRISPRoff调节基因表达。这种方法将识别遗传
调控元件对诱导多能干细胞和神经元至关重要,这是了解如何
组织特异性基因表达受到控制。我们提出的研究将有助于证明
这种方法和动机扩展这种方法,以映射整个基因调控元件,
人类基因组拟议研究的结果将作为基本资源和路线图
为生物医学科学家的广泛社区,并大大告知我们对人类生物学的理解,
疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luke Gilbert其他文献
Luke Gilbert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luke Gilbert', 18)}}的其他基金
Spatial multiomic mapping of gene function with CRISPRoff
使用 CRISPRoff 进行基因功能的空间多组图谱
- 批准号:
10518318 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Spatial multiomic mapping of gene function with CRISPRoff
使用 CRISPRoff 进行基因功能的空间多组图谱
- 批准号:
10693360 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Drug target identification using CRISPRi/a screening
使用 CRISPRi/a 筛选识别药物靶点
- 批准号:
10006378 - 财政年份:2020
- 资助金额:
$ 40.38万 - 项目类别:
A functional genomics approach to determine the mechanism of cellular response to new anti-cancer drugs
确定细胞对新抗癌药物反应机制的功能基因组学方法
- 批准号:
9087854 - 财政年份:2016
- 资助金额:
$ 40.38万 - 项目类别:
相似国自然基金
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Leveraging deep biology for brain resilience to AD pathology
利用深层生物学增强大脑对 AD 病理的恢复能力
- 批准号:
486679 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Operating Grants
Market Feasibility for a Engineering Biology Approach to Cell Therapy for Brain Cancer and Regenerative Medicine
脑癌和再生医学细胞治疗的工程生物学方法的市场可行性
- 批准号:
10074920 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Grant for R&D
Image-based Systems Biology of Vascular Co-option in Brain Tumors
脑肿瘤血管选择的基于图像的系统生物学
- 批准号:
10681077 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Fibroblast-derived laminin regulates blood-brain barrier integrity and fibroblast biology in hemorrhagic brain
成纤维细胞衍生的层粘连蛋白调节出血脑中的血脑屏障完整性和成纤维细胞生物学
- 批准号:
10749280 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
ICF: UK Brain BioLink (UK Brain Biology Resource Link)
ICF:UK Brain BioLink(英国脑生物学资源链接)
- 批准号:
MR/X004317/1 - 财政年份:2023
- 资助金额:
$ 40.38万 - 项目类别:
Research Grant
NSF Postdoctoral Fellowship in Biology FY 2022: Gene-Brain-Behavior Phenotypes of Dog Aggression
2022 财年 NSF 生物学博士后奖学金:狗攻击性的基因-大脑-行为表型
- 批准号:
2209046 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Fellowship Award
Combining noninvasive brain stimulation and neuroimaging to study human brain biology
结合无创脑刺激和神经影像学研究人脑生物学
- 批准号:
RGPIN-2019-06514 - 财政年份:2022
- 资助金额:
$ 40.38万 - 项目类别:
Discovery Grants Program - Individual
KBASE2: Korean Brain Aging Study, Longitudinal Endophenotypes and Systems Biology
KBASE2:韩国大脑衰老研究、纵向内表型和系统生物学
- 批准号:
10199190 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
Combining noninvasive brain stimulation and neuroimaging to study human brain biology
结合无创脑刺激和神经影像学研究人脑生物学
- 批准号:
RGPIN-2019-06514 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
Discovery Grants Program - Individual
Is brain insulin resistance a feature of the biology of depression? A pilot multi-modality neuroimaging study in adolescents
大脑胰岛素抵抗是抑郁症的生物学特征吗?
- 批准号:
466627 - 财政年份:2021
- 资助金额:
$ 40.38万 - 项目类别:
Studentship Programs