Redox enzymes - tuning and design

氧化还原酶 - 调整和设计

基本信息

项目摘要

PROJECT SUMMARY Enzymes exhibit superb catalytic efficiencies and reaction selectivity. Local electric field (electrostatic) effects have been proposed as critical factors, providing stability and regulation of enzyme function and redox behavior. Within a protein, these effects are difficult to detect and control. However, molecular transition metal complexes with incorporated electrostatic interactions offer spectroscopic signatures, making these effects easier to study. In contrast to other noncovalent interactions, such as H-bonding, experimental examples of local electric field effects have been minimally explored despite theoretical studies supporting their potential to improve reaction rate, regioselectivity, and stereoselectivity at molecular systems. Of the existing state-of-the-art experimental examples of designed electric fields, several practical challenges currently limit the scalability and generality of these techniques. Therefore, the broad objective of this proposal is to develop transition metal complexes with local electric field effects and to study how modulation of the electrostatic interaction can be used to control reactivity. This research is based on the central hypothesis that incorporating cationic or anionic moieties proximal to a transition metal center will result in defined and measurable electric field effects, which can then be harnessed to tune the proton- and electron-transfer reactivity of the transition metal complex. The following specific aims will be explored: 1) Develop correlations between electric field effects at Mn, Cr and V Schiff base complexes to proton, electron, and hydrogen atom transfer reactions; and 2) Demonstrate stoichiometric O- and N-atom transfer reactions. We will use the straightforward synthesis and broad reactivity of Schiff base complexes to our advantage to study these electrostatic effects. Cyclic voltammetry, X-ray diffraction, and vibrational spectroscopy will be used to quantify the magnitude of the electric field present at the transition metal complex. Further, reactivity studies will employ electron paramagnetic resonance and UV-vis absorption spectroscopies. The product of this research will be a fundamental understanding of how electric fields play key roles in modulating reactivity of transition metals. This model will build our understanding of how enzymes exploit similar effects to achieve reaction selectivity and rate-enhancement for biosynthetic processes.
项目概要 酶表现出卓越的催化效率和反应选择性。局部电场(静电)效应 已被提议作为关键因素,提供酶功能和氧化还原行为的稳定性和调节。 在蛋白质内,这些效应很难检测和控制。然而,分子过渡金属配合物 结合静电相互作用提供光谱特征,使这些效应更容易研究。 与其他非共价相互作用(例如氢键)相比,局域电场的实验示例 尽管理论研究支持其改善反应的潜力,但对其影响的探索却很少 分子系统的速率、区域选择性和立体选择性。现有最先进的实验 设计电场的例子,目前的一些实际挑战限制了其可扩展性和通用性 这些技术。因此,该提案的总体目标是开发具有以下特征的过渡金属配合物: 局部电场效应并研究如何使用静电相互作用的调制来控制 反应性。 这项研究基于这样的中心假设:结合接近的阳离子或阴离子部分 过渡金属中心将产生明确且可测量的电场效应,然后可以对其进行利用 调节过渡金属络合物的质子和电子转移反应性。具体目标如下 将探讨: 1) 开发 Mn、Cr ​​和 V 席夫碱配合物电场效应之间的相关性 质子、电子和氢原子转移反应; 2) 展示化学计量的 O 原子和 N 原子 转移反应。我们将利用席夫碱配合物的直接合成和广泛反应性来构建我们的 研究这些静电效应的优势。循环伏安法、X 射线衍射和振动光谱 将用于量化过渡金属配合物中存在的电场的大小。更远, 反应性研究将采用电子顺磁共振和紫外可见吸收光谱。这 这项研究的成果将是对电场如何在调制中发挥关键作用的基本理解 过渡金属的反应性。该模型将帮助我们了解酶如何利用类似的效应 实现生物合成过程的反应选择性和速率提高。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANASTASSIA N ALEXANDROVA其他文献

ANASTASSIA N ALEXANDROVA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANASTASSIA N ALEXANDROVA', 18)}}的其他基金

Redox enzymes - tuning and design
氧化还原酶 - 调整和设计
  • 批准号:
    10001577
  • 财政年份:
    2019
  • 资助金额:
    $ 1.84万
  • 项目类别:
Redox enzymes - tuning and design
氧化还原酶 - 调整和设计
  • 批准号:
    10437653
  • 财政年份:
    2019
  • 资助金额:
    $ 1.84万
  • 项目类别:
Redox enzymes - tuning and design
氧化还原酶 - 调整和设计
  • 批准号:
    10645308
  • 财政年份:
    2019
  • 资助金额:
    $ 1.84万
  • 项目类别:
Redox enzymes - tuning and design
氧化还原酶 - 调整和设计
  • 批准号:
    10189664
  • 财政年份:
    2019
  • 资助金额:
    $ 1.84万
  • 项目类别:
Redox enzymes - tuning and design
氧化还原酶 - 调整和设计
  • 批准号:
    10437246
  • 财政年份:
    2019
  • 资助金额:
    $ 1.84万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.84万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了