Transcriptional Profiling to Discriminate Bacterial and Non-bacterial Respiratory Illnesses
转录谱分析可区分细菌性和非细菌性呼吸道疾病
基本信息
- 批准号:10349622
- 负责人:
- 金额:$ 11.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAcute bronchitisAcute respiratory infectionAdultAffectAgeAntibiotic TherapyAntibiotic-resistant organismAntibioticsAntimicrobial ResistanceAsthmaBacteriaBacterial InfectionsBiological MarkersBloodChronicChronic Obstructive Airway DiseaseChronic lung diseaseClinicalClinical MedicineDataDevelopmentDiagnosisDiagnostic testsEtiologyFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGenesGeneticGenetic TranscriptionGoalsHospitalsImmune responseInfectionIntegration Host FactorsLifeLinkLungLung diseasesLung infectionsMethodsMicroarray AnalysisMicrobiologyModelingOutpatientsPatient CarePatientsPatternPerformancePersonsPneumoniaPolymerase Chain ReactionPopulationPublic HealthRecording of previous eventsRespiratory Signs and SymptomsRespiratory Tract InfectionsSensitivity and SpecificitySubgroupSymptomsSyndromeTestingViralVirusWhole Bloodadjudicateadjudicationage groupbaseco-infectiondiagnostic accuracydifferential expressiongenetic signatureimprovedmicrobialmolecular diagnosticsnovel strategiespatient subsetsperipheral bloodpersonalized diagnosticspoint-of-care diagnosticspredictive modelingrapid diagnosisrespiratoryrespiratory virustooltranscriptome sequencing
项目摘要
Acute respiratory infections (ARI) occur commonly throughout life and are a leading cause of antibiotic
overuse. Antibiotic use is directly linked to spread of antimicrobial resistance, which is now considered to be
one of the most urgent threats to global public health. In most cases of ARI, microbial etiology is unknown and
antibiotics are administered empirically and often inappropriately. Although sensitive molecular diagnostics
such as polymerase chain reaction (PCR) allow rapid diagnosis of a wide variety of respiratory viruses, their
impact on patient management and antibiotic prescription has been modest primarily due to concern about
bacterial co-infection. Sensitive and specific diagnostic tests for bacterial lung infection are currently lacking.
Gene expression profiling of whole blood represents a powerful new approach for analysis of the host
response during infection. Preliminary studies using microarrays indicate that viruses and bacteria trigger
specific host transcriptional patterns in blood, yielding unique “bio-signatures” that may discriminate viral from
bacterial causes of infection. Although encouraging, studies to date have not produced predictive gene sets
demonstrating sufficient accuracy required for use in clinical medicine. Importantly, subgroups of patients with
underlying conditions, specific clinical syndromes and those with mixed viral-bacterial infections have not been
resolved by gene expression signatures. It is likely that the accuracy of diagnostic predictive gene sets can be
optimized by analyzing transcriptional profiles while accounting for these host and clinical factors. In contrast
to microarray technology, RNA sequencing is an unbiased method and is potentially more sensitive for
identifying differentially expressed host genes. This project will evaluate optimal blood predictive gene
signatures using RNA sequencing in adults hospitalized with ARI to distinguish bacterial and nonbacterial
illness in the presence of preexisting lung disease including asthma and chronic obstructive pulmonary disease
as well as for pneumonia vs. non-pneumonic syndromes. From a total of 1950 hospitalized patients with ARI,
680 illnesses that have adjudicated diagnoses of viral alone, bacterial alone or mixed viral-bacterial infection
will be selected for RNA sequencing and data used to develop a predictive model to discriminate bacterial and
nonbacterial respiratory illness. The goal of this study is to define a limited number of host predictive
expression genes that can be developed into a rapid point of care diagnostic and can be used by clinicians to
discriminate bacterial and nonbacterial illness to optimally manage patients presenting to the hospital with
respiratory symptoms. If successful, this approach could be extended to and validated in outpatients and other
age groups in the future for maximal impact on patient care and antibiotic prescription.
急性呼吸道感染(ARI)通常发生在整个生命过程中,是抗生素的主要原因
过度使用抗生素的使用与抗生素耐药性的传播直接相关,现在认为这是一个严重的问题。
全球公共卫生面临的最紧迫威胁之一。在大多数ARI病例中,微生物病因学是未知的,
抗生素的使用是凭经验进行的,而且往往是不适当的。虽然敏感的分子诊断
例如聚合酶链反应(PCR),可以快速诊断多种呼吸道病毒,
对患者管理和抗生素处方影响不大,主要是因为担心
细菌共感染。目前缺乏敏感和特异性的细菌性肺部感染诊断试验。
全血基因表达谱分析是一种强有力的分析宿主的新方法
感染时的反应。使用微阵列的初步研究表明,
血液中特定的宿主转录模式,产生独特的“生物签名”,可以区分病毒和
感染的细菌原因。尽管令人鼓舞,但迄今为止的研究还没有产生预测基因集
证明了在临床医学中使用所需的足够的准确度。重要的是,
基础疾病、特定临床综合征和病毒-细菌混合感染的患者尚未被
通过基因表达特征来解决。诊断预测基因集的准确性可能是
通过分析转录谱同时考虑这些宿主和临床因素来优化。相比之下
与微阵列技术相比,RNA测序是一种无偏的方法,对
鉴定差异表达的宿主基因。本项目将评估最佳血液预测基因
使用RNA测序在ARI住院成人中区分细菌和非细菌的特征
存在既存肺部疾病(包括哮喘和慢性阻塞性肺病)的疾病
以及肺炎与非肺炎综合征。从总共1950名ARI住院患者中,
680种疾病已裁定诊断为病毒单独感染、细菌单独感染或病毒-细菌混合感染
将被选择用于RNA测序,数据用于开发预测模型,以区分细菌和
非细菌性呼吸道疾病本研究的目的是确定一个有限数量的主机预测
表达基因,可以发展成为一种快速的护理点诊断,并可用于临床医生,
区分细菌性和非细菌性疾病,以最佳方式管理到医院就诊的患者
呼吸道症状如果成功,这种方法可以扩展到门诊病人和其他
年龄组在未来对病人护理和抗生素处方的最大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ann R Falsey其他文献
Ann R Falsey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ann R Falsey', 18)}}的其他基金
Transcriptional Profiling to Discriminate Bacterial and Non-bacterial Respiratory Illnesses
转录谱分析可区分细菌性和非细菌性呼吸道疾病
- 批准号:
10555338 - 财政年份:2019
- 资助金额:
$ 11.28万 - 项目类别:
Transcriptional Profiling to Discriminate Bacterial and Non-bacterial Respiratory Illnesses
转录谱分析可区分细菌性和非细菌性呼吸道疾病
- 批准号:
10084258 - 财政年份:2019
- 资助金额:
$ 11.28万 - 项目类别:
Transcriptional Profiling to Discriminate Bacterial and Non-bacterial Respiratory Illnesses
转录谱分析可区分细菌性和非细菌性呼吸道疾病
- 批准号:
10357572 - 财政年份:2019
- 资助金额:
$ 11.28万 - 项目类别:
Reduction of Uneccessary Antibiotics in Adults by the Use of Viral Diagnostics
通过使用病毒诊断减少成人不必要的抗生素
- 批准号:
7915044 - 财政年份:2009
- 资助金额:
$ 11.28万 - 项目类别:
Reduction of Uneccessary Antibiotics in Adults by the Use of Viral Diagnostics
通过使用病毒诊断减少成人不必要的抗生素
- 批准号:
8098025 - 财政年份:2008
- 资助金额:
$ 11.28万 - 项目类别:
Reduction of Uneccessary Antibiotics in Adults by the Use of Viral Diagnostics
通过使用病毒诊断减少成人不必要的抗生素
- 批准号:
7435921 - 财政年份:2008
- 资助金额:
$ 11.28万 - 项目类别:
Reduction of Uneccessary Antibiotics in Adults by the Use of Viral Diagnostics
通过使用病毒诊断减少成人不必要的抗生素
- 批准号:
7896434 - 财政年份:2008
- 资助金额:
$ 11.28万 - 项目类别:
Reduction of Uneccessary Antibiotics in Adults by the Use of Viral Diagnostics
通过使用病毒诊断减少成人不必要的抗生素
- 批准号:
7658798 - 财政年份:2008
- 资助金额:
$ 11.28万 - 项目类别:
Sixth International Respiratory Syncytial Virus Symposium
第六届国际呼吸道合胞病毒研讨会
- 批准号:
7330161 - 财政年份:2007
- 资助金额:
$ 11.28万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 11.28万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 11.28万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 11.28万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 11.28万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 11.28万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 11.28万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 11.28万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 11.28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 11.28万 - 项目类别:
Standard Grant