Exploiting Mutant PPM1D-induced Metabolic Defects with Nanoparticle Encapsulated NAMPT Inhibitors
利用纳米颗粒封装的 NAMPT 抑制剂利用突变 PPM1D 诱导的代谢缺陷
基本信息
- 批准号:10507757
- 负责人:
- 金额:$ 4.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAnatomyAnimal ModelAstrocytesBiocompatible MaterialsBiodistributionBiological AssayBiological ModelsBiomedical EngineeringBlood - brain barrier anatomyBone MarrowBrainBrain NeoplasmsBrain StemCancer cell lineCause of DeathCell LineCell modelCellsClinicalClinical TrialsCommunicationConvectionCoupledCpG IslandsDatabasesDefectDevelopmentDiffuse intrinsic pontine gliomaDoseDose LimitingDrug Delivery SystemsEncapsulatedEnzymesExcisionFormulationFutureGenesGoalsHumanHypermethylationIn VitroIntracranial NeoplasmsLaboratoriesLocationMalignant Childhood NeoplasmMalignant NeoplasmsMalignant neoplasm of central nervous systemMetabolicMethodsModelingMolecular ProfilingMutationNatureOncogenicOpen Reading FramesOperative Surgical ProceduresPPM1D genePatientsPharmaceutical PreparationsPhenotypePhosphoric Monoester HydrolasesPolyethylene GlycolsPolymersPontine structurePre-Clinical ModelPublishingRadiation therapyResearchRetinaScienceSiteSurvival RateTechniquesTestingTherapeuticTimeToxic effectTumor VolumeWorkXenograft procedurebrain parenchymabrain tissuecell killingchemotherapycopolymereffective therapyenzyme biosynthesisin vivoin vivo Modelinhibitorinnovationmutantnanoparticleneoplastic cellnovelnovel therapeutic interventionpalliativepharmacologicpoly(lactic acid)pre-clinicalpromotersmall moleculestandard of carestemsuccesstumortumor microenvironment
项目摘要
PROJECT SUMMARY
Diffuse Intrinsic Pontine Glioma (DIPG) is a leading cause of death from pediatric cancer, with an abysmal <1%
five-year survival rate. The lethal nature of this cancer stems from the lack of effective treatment options, and
while radiotherapy is the current standard of care, it can be considered is palliative at best. It is difficult to use
surgery or chemotherapy as these tumors form within the blood brain barrier (BBB), in the pons region of the
brainstem. Therefore, significant effort has been directed towards understanding the molecular profiles of DIPG,
which can be targeted for selective tumor cell killing in these tumors. Recently, the Bindra laboratory published
a novel discovery that truncating mutations in PPM1D, which are commonly found in DIPG, induce a global CpG
Island hypermethylation phenotype (CIMP)-like state. This mutation leads to a diverse range of cellular
phenotypes, including metabolic defects which we believe can be exploited for a therapeutic gain. To this end,
we found that mutant PPM1D induces promoter hypermethylation in the NAD+ biosynthesis gene NAPRT, an
important enzyme required to produce NAD+. Our group demonstrated that mutant PPM1D-induced NAPRT
silencing confers exquisite sensitivity to a class of drugs which target NAMPT, another key NAD+ enzyme. This
work was recently published in Nature Communications (Fons et al., 2019). Based on these novel findings, and
the desperate need for new DIPG therapies, we propose to develop NAMPT inhibitors (NAMPTi’s) for the
treatment of PPM1D-mutant DIPG. Blood-brain barrier (BBB)-penetrant NAMPTi’s have been developed and
tested in clinical trials, however, their success has been limited by dose-limiting toxicities in the bone marrow
and retina. To address these liabilities, this proposal aims to develop nanoparticle-encapsulated NAMPT
inhibitors (NAMPTi-NPs) for direct delivery into the tumor microenvironment, and to validate them using
in vitro and in vivo patient-derived models. My proposal will accomplish this goal with two aims: In Aim 1, we
will create and optimize NPs that have high drug encapsulation efficiency, sustained retention of NAMPTi-NP in
target sites, and demonstrate effective cell killing in NHA isogenic cell models and CCLE cell lines. Aim 2 will
show the clinical feasibility of NAMPTi-NP via in vivo modeling that will encompass toxicity screens of free drug
NAMPTi and NAMPTi-NP, as well as the biodistribution of these drugs within the brain. Lastly, we will show
efficacy through reduction in size of PPM1D-mutant tumors treated with NAMPTi-NP. Altogether, this work will
utilize a comprehensive and rigorous bench-based approach, coupled with computational and
bioengineering methods, to develop a novel treatment for DIPG. My studies will serve as a critical proof-of-
concept that seeks to establish an entirely new NP-based strategy targeting a key metabolic defect in DIPG. If
successful, our approach can be applied to many other small molecules and brain tumors in the future.
项目摘要
弥漫性内在脑桥胶质瘤(DIPG)是儿童癌症死亡的主要原因,
五年生存率。这种癌症的致命性源于缺乏有效的治疗方案,
虽然放射治疗是目前的标准治疗,但它最多只能被认为是姑息治疗。很难用
手术或化疗,因为这些肿瘤在血脑屏障(BBB)内形成,在脑桥区域,
脑干因此,大量的努力已经指向理解DIPG的分子谱,
其可以被靶向用于选择性杀死这些肿瘤中的肿瘤细胞。最近,宾德拉实验室发表了
一项新的发现,即在DIPG中常见的PPM 1D中的截短突变诱导了全局CpG
岛状高甲基化表型(CIMP)样状态。这种突变导致多种细胞
表型,包括我们认为可以利用的代谢缺陷来获得治疗效果。为此目的,
我们发现突变型PPM 1D诱导NAD+生物合成基因NAPRT启动子的超甲基化,
产生NAD+所需的重要酶。我们的研究小组证明突变型PPM 1D诱导的NAPRT
沉默赋予了对靶向NAMPT(另一种关键NAD+酶)的一类药物的高度敏感性。这
工作最近发表在Nature Communications(Fons等人,2019年)。基于这些新的发现,
迫切需要新的DIPG疗法,我们建议开发NAMPT抑制剂(NAMPTi),
PPM 1D突变体DIPG的处理。已经开发了血脑屏障(BBB)渗透剂NAMPTi,
然而,在临床试验中,它们的成功受到骨髓剂量限制性毒性的限制。
和视网膜。为了解决这些责任,本提案旨在开发纳米颗粒封装的NAMPT
抑制剂(NAMPTi-NP)直接递送到肿瘤微环境中,并使用
体外和体内患者来源的模型。我的建议将通过两个目标实现这一目标:在目标1中,我们
将产生和优化具有高药物包封效率、NAMPTi-NP在药物包封中的持续保留的NP。
靶向位点,并在NHA同基因细胞模型和CCLE细胞系中证明有效的细胞杀伤。目标2将
通过体内建模显示NAMPTi-NP的临床可行性,其将包括游离药物的毒性筛选
NAMPTi和NAMPTi-NP,以及这些药物在脑内的生物分布。最后,我们将展示
通过减小用NAMPTi-NP处理的PPM 1D突变肿瘤的尺寸来提高疗效。总之,这项工作将
利用全面和严格的基于基准的方法,加上计算和
生物工程方法,开发一种新的治疗DIPG。我的研究将作为一个关键的证据-
该概念旨在建立一种全新的基于NP的策略,靶向DIPG中的关键代谢缺陷。如果
如果成功,我们的方法将来可以应用于许多其他小分子和脑肿瘤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew A. Murray其他文献
Matthew A. Murray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 4.37万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 4.37万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 4.37万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 4.37万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 4.37万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 4.37万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




