Mechanistic models for predicting the dynamics of microbial communities
预测微生物群落动态的机制模型
基本信息
- 批准号:10490833
- 负责人:
- 金额:$ 7.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:16S ribosomal RNA sequencingAccelerationAddressAffectAlgorithmsAntibioticsBacterial PhysiologyBehaviorBiologicalBiomedical EngineeringCoculture TechniquesCollaborationsCollectionCommunitiesComplexConsumptionCorrelation StudiesDataData SetDoctor of PhilosophyEngineeringEnvironmentExperimental ModelsFecesGnotobioticGoalsGrowthHealthHumanIn VitroInvestigationKnowledgeLaboratoriesLaboratory cultureLawsLinkMass Spectrum AnalysisMeasurableMeasuresMentorsMetabolicMethodsMicrobeModelingModificationMotivationMusOutcomeParentsPeriodicalsPhasePhenotypePhysicsProductionPropertyResearchResourcesScientistSeriesSocietiesSourceSystemTechniquesTherapeuticTimeToxinTrainingcareercommunity settingdiverse dataempowermentexperimental studyfeedinggraduate studentgut microbiotain vivoin vivo Modelinterestmathematical modelmembermetabolomicsmicrobialmicrobial communitymicrobiotanext generation sequencingnovelnovel therapeuticspredictive modelingreconstitutionresponsesingle moleculestatisticstheoriestherapeutic developmenttherapeutic targetundergraduate student
项目摘要
Project summary
Microbial communities within the human gut broadly and significantly affect host health. Engineering the
dynamics of microbial communities is therefore a promising direction for new therapeutics. However, microbes
within a community affect one another’s growth through a wide variety of mechanisms whose relative importance
remain unclear, hindering the predictive capability of existing models for community dynamics. To address this
knowledge gap, I propose experimental and mathematical modeling methods to disentangle and measure
the strengths of the various interaction mechanisms.
Key to my proposal is our lab’s powerful set of communities and microbial isolates derived from mice stool
that have similar compositions in laboratory cultures as in the gut of gnotobiotic mice. They enable me to
assemble and perturb the communities in lab cultures while mimicking behaviors relevant to host health. Guided
by mathematical models that represent microbes as consumers and producers of environmental resources, as
well as agents of other potential interaction mechanisms, I will assemble different combinations of the isolates
and measure their growth properties to quantify their interaction mechanisms. For example, the amount of growth
of one species in the medium spent by the growth of another species reflects the amount of overlap in the
resources consumed by these two species. I will infer interaction mechanisms from two additional perspectives
by quantifying environmental metabolites during growth of the communities, and investigating the statistics of
fluctuations in species abundances over time in vivo. These three approaches will integrate high throughput
experiments with mathematical modeling to systematically measure the importance of various interaction
mechanisms, and generate a framework to do so for any microbial community. Together, the outcomes will
ground species interactions mechanistically, empowering the engineering of microbial communities.
My interdisciplinary proposal leverages my PhD training in physics, particularly statistical physics and the
modeling of complex systems, and bacterial physiology. It will also train me in high-throughput phenotyping
(next-generation sequencing and mass spectrometry metabolomics) of microbial communities, which will help
me achieve my career goal to lead a laboratory that engineer microbial communities to benefit society. My
sponsoring scientist Dr. Kerwyn Casey Huang in the Stanford Department of Bioengineering is an excellent
mentor for the plan. His interdisciplinary lab bridges phenomena from single molecules to the multi-species scale
using physical and biological techniques, and collaborates intimately with leading labs in microbiota research at
Stanford. Thus, it is the ideal environment to pursue the ideas in my proposal. I will also actively engage
undergraduate and graduate students in my proposed projects.
项目概要
人类肠道内的微生物群落广泛而显着地影响宿主健康。工程设计
因此,微生物群落的动态是新疗法的一个有前途的方向。然而,微生物
一个社区内的人通过多种机制影响彼此的成长,这些机制的相对重要性
仍不清楚,阻碍了现有社区动态模型的预测能力。为了解决这个问题
知识差距,我提出实验和数学建模方法来理清和测量
各种互动机制的优势。
我的建议的关键是我们实验室强大的群落和源自小鼠粪便的微生物分离株
它们在实验室培养物中的成分与在限生小鼠肠道中的成分相似。他们使我能够
聚集并扰乱实验室文化中的社区,同时模仿与宿主健康相关的行为。引导
通过将微生物表示为环境资源的消费者和生产者的数学模型,
以及其他潜在相互作用机制的代理,我将组装分离株的不同组合
并测量它们的生长特性以量化它们的相互作用机制。例如,增长量
一个物种在另一物种生长所消耗的培养基中的消耗量反映了该物种的重叠量
这两个物种消耗的资源。我将从另外两个角度来推断交互机制
通过量化群落生长过程中的环境代谢物,并调查统计数据
体内物种丰度随时间的波动。这三种方法将集成高吞吐量
通过数学建模进行实验,系统地衡量各种相互作用的重要性
机制,并为任何微生物群落生成一个框架。共同努力,结果将
地面物种机械地相互作用,增强微生物群落的工程能力。
我的跨学科提案利用了我在物理学方面的博士学位训练,特别是统计物理学和
复杂系统建模和细菌生理学。它还将训练我进行高通量表型分析
微生物群落(下一代测序和质谱代谢组学),这将有助于
我实现了我的职业目标,领导一个改造微生物群落造福社会的实验室。我的
斯坦福大学生物工程系的资助科学家 Kerwyn Casey Huang 博士是一位优秀的科学家
该计划的导师。他的跨学科实验室将单分子现象与多物种规模联系起来
使用物理和生物技术,并与微生物群研究的领先实验室密切合作
斯坦福。因此,这是实现我提案中的想法的理想环境。我也会积极参与
本科生和研究生参与我提出的项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Po-Yi Ho其他文献
Po-Yi Ho的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Po-Yi Ho', 18)}}的其他基金
Mechanistic models for predicting the dynamics of microbial communities
预测微生物群落动态的机制模型
- 批准号:
10315358 - 财政年份:2022
- 资助金额:
$ 7.18万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 7.18万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 7.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




