Picornavirus Genome Replication

小核糖核酸病毒基因组复制

基本信息

  • 批准号:
    10447359
  • 负责人:
  • 金额:
    $ 53.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-20 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

All positive-strand RNA viruses require host membranes for multiplication, even non-enveloped viruses like poliovirus (PV). In some cases, viruses simply hijack host membranes and use them intact. However, in other cases, viruses remodel the entire host lipidome to create virus-induced membranes with unique phospholipid composition, which, in turn, confers upon these membranes unique biochemical and biophysical properties to enable unique biological function. PV, related enteroviruses, and likely many other viruses, fall into this latter category. What is so astonishing about the PV-induced transformations is that they only require translation of the infecting RNA, without the need for genome replication or host transcription. What this circumstance suggests is that post-transcriptional and/or post-translational mechanisms exist in the mammalian cell cytoplasm capable of completely reprogramming phospholipid biosynthesis and membrane biogenesis in a matter of minutes and that one or a few master regulators, which can be coopted by PV, likely control these mechanisms. The overarching premise of the research proposed during the extension is that our studies will illuminate mechanisms regulating membrane biogenesis, function, and trafficking by understanding how PV hijacks and coopts these mechanisms. We will pursue the following specific aims: Aim 1 - Study contributions of 3CD to virion assembly, trafficking, and egress; Aim 2 – Coopting of c-Fos by PV to induce phospholipid biosynthesis and membrane biogenesis; and Aim 3 – Characterization of the dynamics, mechanisms, and functions of host-lipidome remodeling during PV infection. RELEVANCE (See instructions): Picornaviruses represent an existing and emerging threat to U.S. public health. Achievement of the goals of the application will provide novel targets and mechanisms for development of inhibitors to treat infections by picornaviruses, especially those for which vaccines are not available.
所有正链 RNA 病毒都需要宿主膜进行繁殖,甚至是无包膜病毒,例如 脊髓灰质炎病毒(PV)。在某些情况下,病毒只是劫持宿主细胞膜并完整地使用它们。然而,在 在其他情况下,病毒会重塑整个宿主脂质组,以创建具有独特的病毒诱导膜 磷脂成分,反过来又赋予这些膜独特的生化和 生物物理特性可实现独特的生物功能。 PV、相关肠道病毒以及可能的许多病毒 其他病毒属于后一类。光伏引发的转变如此令人惊讶的是 他们只需要感染RNA的翻译,而不需要基因组复制或宿主 转录。这种情况表明转录后和/或翻译后 哺乳动物细胞的细胞质中存在能够完全重编程磷脂的机制 生物合成和膜生物发生只需几分钟,并且一个或几个主调节器, 可以被 PV 采纳,可能控制这些机制。研究的总体前提 在扩展期间提出的是,我们的研究将阐明调节膜的机制 通过了解 PV 如何劫持和利用这些机制来了解生物发生、功能和运输。我们 将追求以下具体目标: 目标 1 - 研究 3CD 对病毒体组装、贩运、 和出口;目标 2 – 通过 PV 结合 c-Fos 诱导磷脂生物合成和膜形成 生物发生;目标 3 – 宿主脂质组的动力学、机制和功能的表征 PV感染期间的重塑。 相关性(参见说明): 小核糖核酸病毒是对美国公共卫生的现有和新威胁。目标的实现 该申请将为开发治疗感染的抑制剂提供新的靶点和机制 由小核糖核酸病毒引起,尤其是那些尚无疫苗的病毒。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CRAIG E. CAMERON其他文献

CRAIG E. CAMERON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CRAIG E. CAMERON', 18)}}的其他基金

Enteroviral 2C protein as a therapeutic target
肠道病毒2C蛋白作为治疗靶点
  • 批准号:
    10609524
  • 财政年份:
    2022
  • 资助金额:
    $ 53.4万
  • 项目类别:
Enteroviral 2C protein as a therapeutic target
肠道病毒2C蛋白作为治疗靶点
  • 批准号:
    10450381
  • 财政年份:
    2022
  • 资助金额:
    $ 53.4万
  • 项目类别:
Core C: Enzymology Core
核心 C:酶学核心
  • 批准号:
    10513682
  • 财政年份:
    2022
  • 资助金额:
    $ 53.4万
  • 项目类别:
Optimizing nucleoside analog efficacy with novel exonuclease inhibitors
使用新型核酸外切酶抑制剂优化核苷类似物的功效
  • 批准号:
    10514274
  • 财政年份:
    2022
  • 资助金额:
    $ 53.4万
  • 项目类别:
Contribution of IL-32 gene expression to viral persistence
IL-32 基因表达对病毒持久性的贡献
  • 批准号:
    10057016
  • 财政年份:
    2020
  • 资助金额:
    $ 53.4万
  • 项目类别:
Contribution of IL-32 gene expression to viral persistence
IL-32 基因表达对病毒持久性的贡献
  • 批准号:
    10177863
  • 财政年份:
    2020
  • 资助金额:
    $ 53.4万
  • 项目类别:
Picornavirus Genome Replication
小核糖核酸病毒基因组复制
  • 批准号:
    10021287
  • 财政年份:
    2019
  • 资助金额:
    $ 53.4万
  • 项目类别:
RNA-dependent RNA Polymerase
RNA依赖性RNA聚合酶
  • 批准号:
    10017543
  • 财政年份:
    2019
  • 资助金额:
    $ 53.4万
  • 项目类别:
Picornavirus Genome Replication
小核糖核酸病毒基因组复制
  • 批准号:
    10640512
  • 财政年份:
    2019
  • 资助金额:
    $ 53.4万
  • 项目类别:
Picornavirus Genome Replication
小核糖核酸病毒基因组复制
  • 批准号:
    10331323
  • 财政年份:
    2019
  • 资助金额:
    $ 53.4万
  • 项目类别:

相似海外基金

Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10590611
  • 财政年份:
    2022
  • 资助金额:
    $ 53.4万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
  • 批准号:
    10706006
  • 财政年份:
    2022
  • 资助金额:
    $ 53.4万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10368975
  • 财政年份:
    2021
  • 资助金额:
    $ 53.4万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
  • 批准号:
    10365254
  • 财政年份:
    2021
  • 资助金额:
    $ 53.4万
  • 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
  • 批准号:
    10202896
  • 财政年份:
    2021
  • 资助金额:
    $ 53.4万
  • 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
  • 批准号:
    10531570
  • 财政年份:
    2021
  • 资助金额:
    $ 53.4万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10541847
  • 财政年份:
    2019
  • 资助金额:
    $ 53.4万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10319573
  • 财政年份:
    2019
  • 资助金额:
    $ 53.4万
  • 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
  • 批准号:
    10062790
  • 财政年份:
    2019
  • 资助金额:
    $ 53.4万
  • 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
  • 批准号:
    DE170100628
  • 财政年份:
    2017
  • 资助金额:
    $ 53.4万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了