Integrative Somatic and Germline Computational Biology to Redefine Clinical Actionability in Solid Tumors

综合体细胞和种系计算生物学重新定义实体瘤的临床可操作性

基本信息

  • 批准号:
    9517271
  • 负责人:
  • 金额:
    $ 40.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The increased accessibility of comprehensive molecular characterization of tumors and germline samples from cancer patients has accelerated translational discoveries and significantly impacted patient care. These approaches ultimately form the basis for precision cancer medicine, whereby “clinically actionable” molecular data about a patient's tumor and germline genomic profile, specifically defined as diagnostic, prognostic, and predictive markers, are used at the point of care to guide treatment decision-making. While these strategies have been successful in certain use cases, the approaches to understand somatic and germline components of cancer patients are typically considered independently, and systematic characterization of the interaction between the somatic and germline genomes in the context of diagnostic and predictive clinical relevance have not yet been systematically performed across large cohorts of patients. This is in part the result of an absence of computational algorithms that are able to consider these features simultaneously, along with a lack of patient cohorts with both somatic and germline features and clinical annotations of relevant treatment responses to guide these investigations. Our previous studies have demonstrated, through innovative computational oncology approaches, how integrated germline and somatic analysis can determine diagnostic and predictive features that have immediate clinical impact in select clinical contexts. The goal of this proposal is to directly respond to Provocative Question PQ3: Do genetic interactions between germline variations and somatic mutations contribute to differences in tumor evolution or response to therapy? Our overarching hypothesis is that complex interactions between germline and somatic features within and across key DNA repair and immune pathways mediate inherited clinical risk, and selective response to existing chemotherapies and emerging immunotherapies. Specifically, in this proposal, we will leverage existing and emerging cohorts of tumor and germline whole exome/transcriptome data from patients, along with relevant phenotypic data regarding response to chemotherapies and immunotherapies, and develop innovative computational biology algorithms to systematically dissect these cohorts and determine how interactions between germline and somatic events shape clinical actionability. This proposal is unique in that it leverages the extensive and novel resources at both the Dana-Farber Cancer Institute/Harvard Cancer Center and the Broad Institute of MIT and Harvard, along with an international team of collaborators, to address the hypotheses outlined herein. The proposed specific aims are: 1) To determine inherited cancer risk in solid tumors through integrative computational biology, 2) To evaluate the impact of somatic and germline interactions on DNA repair defects and response to platinum-based chemotherapies in solid tumors, and 3) To identify somatic and germline features that coordinate to alter the immune microenvironment and impact selective response to immune checkpoint blockade in solid tumors. These studies will define key relationships between germline and somatic variants that shape tumor biology, with implications for understanding patient risk for cancer development and selective response to chemotherapy and immunotherapy. In addition, this project will establish new computational algorithms to enable widespread integrated consideration of germline and somatic features for broader use in the scientific community. Finally, this project will accelerate the clinical relevance of germline and somatic molecular profiling to enable precision cancer medicine, and serve more broadly as an innovative model for intersecting clinical oncology with computational biology.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eliezer M Van Allen其他文献

Eliezer M Van Allen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eliezer M Van Allen', 18)}}的其他基金

Molecular Origins and Evolution to Chemoresistance in Germ Cell Tumors
生殖细胞肿瘤化疗耐药的分子起源和进化
  • 批准号:
    10773483
  • 财政年份:
    2023
  • 资助金额:
    $ 40.72万
  • 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
  • 批准号:
    10443070
  • 财政年份:
    2023
  • 资助金额:
    $ 40.72万
  • 项目类别:
The Cellular Geography of Therapeutic Resistance in Cancer
癌症治疗耐药的细胞地理学
  • 批准号:
    10819853
  • 财政年份:
    2023
  • 资助金额:
    $ 40.72万
  • 项目类别:
Dissecting and Predicting Lethal Prostate Cancer using Biologically Informed Artificial Intelligence
使用生物学信息人工智能剖析和预测致命性前列腺癌
  • 批准号:
    10628274
  • 财政年份:
    2023
  • 资助金额:
    $ 40.72万
  • 项目类别:
A statistical framework to systematically characterize cancer driver mutations in noncoding genomic regions
系统地表征非编码基因组区域中癌症驱动突变的统计框架
  • 批准号:
    10260680
  • 财政年份:
    2019
  • 资助金额:
    $ 40.72万
  • 项目类别:
Integrative Somatic and Germline Computational Biology to Redefine Clinical Actionability in Solid Tumors
综合体细胞和种系计算生物学重新定义实体瘤的临床可操作性
  • 批准号:
    9913487
  • 财政年份:
    2018
  • 资助金额:
    $ 40.72万
  • 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
  • 批准号:
    10084830
  • 财政年份:
    2018
  • 资助金额:
    $ 40.72万
  • 项目类别:
Molecular origins and evolution to chemoresistance in germ cell tumors
生殖细胞肿瘤中化学耐药性的分子起源和进化
  • 批准号:
    10379230
  • 财政年份:
    2018
  • 资助金额:
    $ 40.72万
  • 项目类别:
Integrative Somatic and Germline Computational Biology to Redefine Clinical Actionability in Solid Tumors
综合体细胞和种系计算生物学重新定义实体瘤的临床可操作性
  • 批准号:
    10160834
  • 财政年份:
    2018
  • 资助金额:
    $ 40.72万
  • 项目类别:
Integrative Somatic and Germline Computational Biology to Redefine Clinical Actionability in Solid Tumors
综合体细胞和种系计算生物学重新定义实体瘤的临床可操作性
  • 批准号:
    10396664
  • 财政年份:
    2018
  • 资助金额:
    $ 40.72万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 40.72万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了