Multiscale study of the phenotypic consequences of protein folding intermediates in dihydrofolate reductase

二氢叶酸还原酶中蛋白质折叠中间体表型后果的多尺度研究

基本信息

  • 批准号:
    9468581
  • 负责人:
  • 金额:
    $ 5.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Native atomic structures of many proteins are now known, but they are often just the tip of the iceberg: there are intermediate states on the way to the native state and off-pathway kinetic traps and oligomers. Intermediates have important biological consequences. Many are aggregation-prone and associated with protein deposition diseases, from Parkinson's and ALS to serpin deficiency. Intermediates are targeted by the cellular protein quality control machinery – which can lead to disease, as in cystic fibrosis. Mutations linked to congenital diseases (from ALS to Creutzfeldt-Jakob to cataracts) or somatic mutations in sporadically arising diseases (p53- deficient cancers) often shift specific proteins toward intermediate conformations. Conversely, intermediates close to the native state are targets of remarkably successful drugs. Thus, nonnucleoside inhibitors of HIV reverse transcriptase bind to a pocket absent in that protein's native structure; the drug itself induces or selects this off-native conformation. Finally, intermediates have a critical impact on biotechnology – for example, for stability and storage of therapeutic antibodies. Despite its medical significance, the space of protein intermediates remains largely unexplored. Most have low stability and tend to oligomerize or aggregate, making structure determination very challenging. The most fruitful approach has been to find variants (mutants) that stabilize a given intermediate enough for structural investigation, but this requires good mutational screens. Screens in vitro or in silico can reveal intermediates, yet at low throughput; in vivo screens are high-throughput, yet they can detect intermediates only indirectly. However, in vitro studies of protein-protein interactions (PPI) have advanced greatly in recent years due to high- throughput screening techniques. This project will integrate rapid in silico unfolding simulations, in vitro screening methods adapted from the PPI field, and in vivo measurements of bacterial fitness to investigate intermediates of an essential bacterial enzyme, dihydrofolate reductase (DHFR), which is the target of many antibiotics and the locus of many antibiotic-resistance mutations. This project has three goals. First, to detect populated intermediates in a large library of DHFR variants, combining atomistic Monte Carlo simulations and hydrophobicity fractionation of the protein library in vitro. This requires adapting a “display” method from the PPI field: barcoding each protein molecule with RNA so as to identify the fractionated variants via barcode sequencing. Second, to distinguish and stabilize intermediates populated by mutants (and thus perhaps inducible in the wild-type protein as well) using a library of conformationally selective binding partners, such as nanobodies. Third, to evaluate the effect of distinct DHFR intermediates on the fitness of E. coli cells. Accomplishing these goals will map accessible DHFR intermediates that could be new antibiotic targets. It will also provide a much needed case study on the role of protein folding intermediates on all scales: from atomistic details to fitness effects in populations.
现在许多蛋白质的天然原子结构已为人所知,但它们通常只是冰山一角: 通往天然状态的中间状态以及非路径动力学陷阱和低聚物。中间体 具有重要的生物学后果。许多易于聚集并与蛋白质沉积相关 疾病,从帕金森病、ALS 到丝氨酸蛋白酶抑制剂缺乏症。中间体是细胞蛋白质的目标 质量控制机制——可能导致疾病,如囊性纤维化。与先天性相关的突变 疾病(从 ALS 到克雅氏病再到白内障)或偶发性疾病中的体细胞突变 (p53- 缺陷型癌症)通常会将特定蛋白质转变为中间构象。反之,中间体 接近天然状态的区域是非常成功的药物的目标。因此,HIV非核苷抑制剂 逆转录酶与该蛋白质天然结构中不存在的口袋结合;药物本身诱导或选择 这种非天然构象。最后,中间体对生物技术具有至关重要的影响——例如, 治疗抗体的稳定性和储存。 尽管具有医学意义,但蛋白质中间体的空间在很大程度上仍未被探索。大多数都低 稳定性并且倾向于低聚或聚集,使得结构确定非常具有挑战性。最有成果的 方法是找到足够稳定给定中间体的变体(突变体),用于结构 调查,但这需要良好的突变筛选。体外或计算机屏幕可以揭示中间体,但 低吞吐量时;体内筛选是高通量的,但它们只能间接检测中间体。 然而,由于高蛋白相互作用(PPI)的体外研究近年来取得了很大进展。 通量筛选技术。该项目将整合快速计算机展开模拟、体外筛选 采用 PPI 领域的方法以及细菌适应性的体内测量来研究中间体 一种重要的细菌酶二氢叶酸还原酶 (DHFR),它是许多抗生素和药物的作用靶点 许多抗生素耐药性突变的位点。 该项目有三个目标。首先,为了检测大型 DHFR 变体库中的填充中间体, 结合原子蒙特卡罗模拟和体外蛋白质库的疏水性分级分离。这 需要采用 PPI 领域的“展示”方法:用 RNA 对每个蛋白质分子进行条形码编码,以便 通过条形码测序识别分级变体。二、区分和稳定中间体 使用突变体库填充突变体(因此也可能在野生型蛋白质中诱导) 构象选择性结合伴侣,例如纳米抗体。三、评估不同DHFR的效果 大肠杆菌细胞适应性的中间体。实现这些目标将绘制可利用的 DHFR 中间体 这可能是新的抗生素靶点。它还将为蛋白质折叠的作用提供急需的案例研究 所有尺度的中间体:从原子细节到群体的适应性效应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evgeny Serebryany其他文献

Evgeny Serebryany的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evgeny Serebryany', 18)}}的其他基金

High-throughput disulfide and FRET scanning to reveal protein conformational ensembles in vitro and in vivo.
高通量二硫键和 FRET 扫描可揭示体外和体内蛋白质构象整体。
  • 批准号:
    10191303
  • 财政年份:
    2021
  • 资助金额:
    $ 5.87万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 5.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了