TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
基本信息
- 批准号:10438880
- 负责人:
- 金额:$ 83.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-25 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAnti-Bacterial AgentsAntibioticsAnticodonBacteriaBindingBiochemistryBiological AssayBiologyBiotechnologyCell DeathCell FractionCellsCellular AssayClinicalCodon NucleotidesCollectionComplementComplexDoseDrug Binding SiteDrug TargetingEnzymesEscherichia coliExhibitsFluorescenceFundingGene ClusterGenesGenetic TranscriptionGram-Negative BacteriaGrowthHomo sapiensHumanInitiator CodonInvadedLibrariesMembraneMembrane ProteinsMessenger RNAMethodsMethylationMiningModelingModificationMolecularMulti-Drug ResistanceNatural ProductsNoisePenetrationPermeabilityPharmaceutical PreparationsPhenotypePopulationProductionProlineProtein BiosynthesisPublic HealthPumpReadinessReading FramesResearchResearch InstituteResistanceRibosomesRiskS-AdenosylhomocysteineSideSignal TransductionSilverStructureTestingTimeTransfer RNATransferaseTranslationsbactericidebasecombatdrug discoveryefficacy studyefflux pumpgenome databasegenome sequencinghigh throughput screeningin vivomicrobialmortalitynext generationnovelpandemic diseaseprematureprogramsresistance mechanismresistance mutationresponsescaffoldscale upscreeningsmall molecule
项目摘要
Project Summary. Discovering new antibiotics for Gram-negative bacteria is uniquely challenging, due to their
double-membrane structure that acts as a permeability barrier to drugs and as an anchor for efflux pumps. Efforts
that target one membrane protein or one efflux pump at a time are ineffective, due to rapid rise of resistance
mutations. We will target the TrmD-catalyzed m1G37 methylation of tRNA to inhibit biosynthesis of multiple
classes of membrane proteins, with the potential to accelerate bactericidal action. TrmD is a bacteria-specific S-
adenosyl-methionine (AdoMet)-dependent methyl transferase that controls accuracy of the protein-synthesis
reading frame. Loss of TrmD increases +1 frameshifting and causes cell death. We have shown that genes for
multiple membrane proteins and efflux pumps in E. coli and in other Gram-negative bacteria contain TrmD-
dependent codons near the start of the reading frame. We hypothesize that targeting TrmD will reduce protein
synthesis of all of these genes, thus offering a novel solution to an unmet need. While AstraZeneca (AZ), GSK,
and academic labs have attempted to target TrmD by screening small molecular compound libraries, isolated
hits lack the cell-permeability needed to exhibit an antibacterial effect. Here, we propose to screen a large
collection of microbial extracts and fractions for cell-permeable and TrmD-targeting natural products (NPs) that
are potent and selective over the human counterpart Trm5. We will use a cell-based assay, consisting of a 1:1
mix of an E. coli (Ec) TrmDmCh strain (dependent on trmD for survival and expressing mCh (mCherry) as a
fluorescence marker) and an Ec Trm5YFP strain (dependent on trm5 for survival and expressing YFP), in a high-
throughput screening (HTS) campaign to isolate NPs that selectively inhibit the TrmDmCh strain. We perform this
assay in Ec tolC+ cells, which maintain the entire Gram-negative efflux machinery including the major efflux
pump encoded by tolC, to screen for NPs that are cell-permeable and resistant to efflux. A pilot screen with this
tolC+ cell-based assay has identified an attractive hit, demonstrating the HTS-readiness of the assay. In Aim 1,
we will use this tolC+ cell-based assay to screen 74,770 actinobacterial extracts and fractions available at The
Scripps Research Institute (TSRI). We will assess hits in secondary assays, remove false positives, evaluate
their activity at the whole-cell level, and test them for permeability and efflux in a panel of Gram-negative bacteria.
In Aim 2, we will de-replicate the top 20 hits to isolate the active NPs, determine their structures, and use a
combination of genome sequencing and mining to identify their biosynthetic gene clusters (BGCs) for developing
biotechnology platforms to scale up their production. In Aim 3, we will test active NPs for conferring TrmD-
deficient phenotypes in whole-cell assays, determine their potency, selectivity, mechanism of action, and assess
their risk of resistance. These NPs represent novel leads in a new paradigm of antibiotic discovery that addresses
the multi-drug resistance problem of Gram-negative bacteria.
项目摘要。发现针对革兰氏阴性菌的新抗生素具有独特的挑战性,因为它们
双膜结构,充当药物的渗透屏障和外排泵的锚。努力
由于阻力迅速上升,一次针对一种膜蛋白或一个外排泵的方法无效
突变。我们将靶向 tRNA 的 TrmD 催化的 m1G37 甲基化来抑制多种生物合成
一类膜蛋白,具有加速杀菌作用的潜力。 TrmD 是一种细菌特异性 S-
控制蛋白质合成准确性的腺苷甲硫氨酸 (AdoMet) 依赖性甲基转移酶
阅读框架。 TrmD 的缺失会增加 +1 移码并导致细胞死亡。我们已经证明基因
大肠杆菌和其他革兰氏阴性细菌中的多种膜蛋白和外排泵含有 TrmD-
靠近阅读框起点的依赖密码子。我们假设靶向 TrmD 会减少蛋白质
合成所有这些基因,从而为未满足的需求提供新的解决方案。而阿斯利康 (AZ)、葛兰素史克 (GSK)、
学术实验室尝试通过筛选小分子化合物库来靶向 TrmD,分离出
命中缺乏表现出抗菌作用所需的细胞渗透性。在这里,我们建议大屏
收集细胞渗透性和 TrmD 靶向天然产物 (NP) 的微生物提取物和级分,
比人类对应的 Trm5 更有效且具有选择性。我们将使用基于细胞的检测,包括 1:1
大肠杆菌 (Ec) TrmDmCh 菌株的混合物(依赖于 trmD 生存并表达 mCh (mCherry) 作为
荧光标记)和 Ec Trm5YFP 菌株(依赖于 trm5 生存并表达 YFP),以高
通量筛选 (HTS) 活动旨在分离选择性抑制 TrmDmCh 菌株的 NP。我们执行这个
在 Ec tolC+ 细胞中进行测定,该细胞维持整个革兰氏阴性流出机制,包括主要流出
由 tolC 编码的泵,用于筛选具有细胞渗透性和抗外排性的 NP。带有此的试点屏幕
tolC+ 基于细胞的测定已确定了一个有吸引力的命中,证明了该测定的 HTS 就绪性。在目标 1 中,
我们将使用这种基于 tolC+ 细胞的测定来筛选 74,770 种放线菌提取物和级分,这些提取物和级分可在 The
斯克里普斯研究所 (TSRI)。我们将评估二次测定中的命中,消除误报,评估
它们在全细胞水平上的活性,并在一组革兰氏阴性细菌中测试它们的渗透性和外排性。
在目标 2 中,我们将对前 20 个命中进行去重复,以分离活性 NP,确定其结构,并使用
结合基因组测序和挖掘来识别其生物合成基因簇(BGC)以进行开发
生物技术平台扩大生产规模。在目标 3 中,我们将测试活性 NP 是否授予 TrmD-
全细胞测定中的缺陷表型,确定其效力、选择性、作用机制并评估
他们抵抗的风险。这些纳米粒子代表了抗生素发现新范式的新先导,解决了
革兰氏阴性菌的多重耐药问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ya-Ming Hou其他文献
Ya-Ming Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ya-Ming Hou', 18)}}的其他基金
A cell model of YARS2-associated childhood-onset mitochondrial disease
YARS2 相关的儿童期发病线粒体疾病的细胞模型
- 批准号:
10575369 - 财政年份:2023
- 资助金额:
$ 83.15万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10307014 - 财政年份:2021
- 资助金额:
$ 83.15万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10625857 - 财政年份:2021
- 资助金额:
$ 83.15万 - 项目类别:
Exploring 3Dpol for RNA sequencing in real time
探索 3Dpol 实时 RNA 测序
- 批准号:
10166895 - 财政年份:2020
- 资助金额:
$ 83.15万 - 项目类别:
Exploring 3Dpol for RNA sequencing in real time
探索 3Dpol 实时 RNA 测序
- 批准号:
9974889 - 财政年份:2020
- 资助金额:
$ 83.15万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 83.15万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 83.15万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 83.15万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 83.15万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 83.15万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 83.15万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 83.15万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 83.15万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 83.15万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 83.15万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




