Investigating a molecular basis for Alzheimer's disease subtypes using multiomic data integration and machine-learning
使用多组数据集成和机器学习研究阿尔茨海默病亚型的分子基础
基本信息
- 批准号:10368920
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease brainAlzheimer&aposs disease patientAmericanAmyloid beta-ProteinAutomobile DrivingBehaviorBiochemicalBiologicalBiological ProcessBiologyCatalogsClassificationClinical TrialsComplexConsensusDNADataDetectionDiseaseDisease modelDrug TargetingEarly DiagnosisEtiologyFailureFunctional disorderGene Expression RegulationGene ProteinsGene TargetingGenesGeneticGenetic HeterogeneityGenetic Predisposition to DiseaseGenetic studyGenomeGenomicsGenotypeHeritabilityHeterogeneityImageImmuneIndividualInvestigationKnowledgeLate Onset Alzheimer DiseaseLightMachine LearningMalignant NeoplasmsMedicineMemoryMethodsMethylationMolecularMolecular BiologyMolecular ProfilingMultiomic DataNatural ImmunityNeurobehavioral ManifestationsNeurodegenerative DisordersNeurofibrillary TanglesNon-linear ModelsOnline Mendelian Inheritance In ManPathogenicityPathologyPathway AnalysisPathway interactionsPatientsPharmaceutical PreparationsPhysiologicalPlayPrecision Medicine InitiativePropertyProteinsProteomeRNARoleSenile PlaquesSourceStructureSymptomsValidationVariantabeta accumulationbaseclinical phenotypedata integrationdetection methoddiagnostic strategydisorder riskdisorder subtypedrug developmentendophenotypeepigenomegene networkgenetic architecturegenetic risk factorgenome sequencinggenome wide association studyinnate immune pathwaysinsightinter-individual variationknowledgebasemolecular subtypesmultiple omicsneural networkneuroimagingneuroinflammationneurophysiologypatient populationpersonalized diagnosticsphenomicsphenotypic datapleiotropismpre-clinicalprecision medicineprofiles in patientsprognosticprotein expressionprotein protein interactionquantitative imagingreligious order studyresponsetau Proteinstau aggregationtherapeutic candidatetherapeutic genetherapeutic targettranscriptometranscriptome sequencingunsupervised learningwhole genome
项目摘要
PROJECT ABSTRACT
Investigating a molecular basis for AD subtypes using multiomic data integration
and machine-learning
Despite intense investigation into preclinical Alzheimer’s Disease (AD) disease models, all potential disease-
modifying drugs have failed in clinical trials. Numerous genetic studies have proposed a number of biological
mechanisms, however there has been no consensus on the genetic etiology of AD. This is likely because the
prevailing view of AD as a singular disease is oversimplified and does not consider heterogeneous pathogenic
variation in AD genetic architecture. High-throughput studies indicate that AD is a result of complex, nonlinear
interactions within and between the genome, transcriptome, epigenome, and proteome. While genome-wide
association studies have successfully revealed genes associated with AD, these genes explain disease in a
small proportion of the patient population, and the question of “missing heritability” remains. Thus, in Aim 1, I
propose using linear and nonlinear methods in an integrated multiomics framework with machine learning to
identify pathways significant in AD. While almost all AD patients present the hallmark b-amyloid and
neurofibrillary tangle pathology, they also present significant variability in cognitive symptoms, behaviors, and
neurophysiology. Given this, I hypothesize that inter-individual variation in AD-associated and immune pathways
drives different disease etiologies across the patient population culminating in a common pathophysiology. One
source of heterogeneity may be in immune pathways differentially regulating neuroinflammatory response during
AD. In Aim 2, I propose using an unsupervised classification approach to determine subtypes of AD based on
patient similarity in pathway variation across omic levels, imaging data, and phenotypic data. Specifically, I
hypothesize that pathogenic variation within innate immunity pathways plays a critical role in driving different
disease etiologies between patients. In aim 3, I propose characterizing each omic subtype by generating protein
interaction networks for drug target prioritization. Knowledge from these aims will inform a shift in the current AD
drug development paradigm by informing a precision medicine approach to target specific omic subtypes of AD
instead of a “one size fits all” approach that has failed to date. Investigating genomic heterogeneity in AD through
these aims has the potential to impact detection of pre-symptomatic AD individuals as well as reveal more
insights into the complex genetic architecture of AD.
项目摘要
用多组学数据整合研究AD亚型的分子基础
和机器学习
尽管对临床前阿尔茨海默病(AD)疾病模型进行了密集的调查,但所有潜在的疾病-
修改药物在临床试验中失败了。大量的遗传学研究已经提出了许多生物学上的
然而,对于阿尔茨海默病的遗传病因,目前还没有达成共识。这很可能是因为
普遍认为阿尔茨海默病是一种单一的疾病,过于简单化,没有考虑到异质性致病因素
AD遗传结构的变异。高通量研究表明,AD是复杂的、非线性的结果
基因组、转录组、表观基因组和蛋白质组内部和之间的相互作用。虽然全基因组
协会研究已经成功地发现了与AD相关的基因,这些基因解释了
患者人口比例很小,“缺失遗传性”的问题仍然存在。因此,在目标1中,我
建议在具有机器学习的集成多组学框架中使用线性和非线性方法
确定AD中重要的途径。虽然几乎所有的AD患者都表现出标志性的b-淀粉样蛋白和
神经原纤维缠绕病理,它们也表现出显著的认知症状、行为和
神经生理学。鉴于此,我假设AD相关和免疫途径的个体间变异
在患者群体中驱动不同的疾病病因,最终导致共同的病理生理学。一
异质性的来源可能是在免疫途径不同地调节神经炎性反应
广告。在目标2中,我建议使用一种非监督分类方法来确定AD的亚型,基于
患者在基因组水平、成像数据和表型数据的路径变化上的相似性。具体来说,我
假设先天免疫途径中的致病变异在驱动不同的
患者之间的疾病病因。在目标3中,我建议通过产生蛋白质来表征每个基因组亚型
用于确定药物靶标优先顺序的互动网络。来自这些目标的知识将为当前AD的转变提供信息
通过提供针对AD特定基因组亚型的精确医学方法的药物开发范式
而不是“一刀切”的方法,这种方法迄今未能奏效。通过研究阿尔茨海默病的基因组异质性
这些目标有可能影响对有症状的AD患者的检测,并揭示更多
对AD复杂遗传结构的洞察。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pankhuri Singhal其他文献
Pankhuri Singhal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pankhuri Singhal', 18)}}的其他基金
Investigating a molecular basis for Alzheimer's disease subtypes using multiomic data integration and machine-learning
使用多组数据集成和机器学习研究阿尔茨海默病亚型的分子基础
- 批准号:
10524780 - 财政年份:2020
- 资助金额:
$ 4.68万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




