Investigating a molecular basis for Alzheimer's disease subtypes using multiomic data integration and machine-learning

使用多组数据集成和机器学习研究阿尔茨海默病亚型的分子基础

基本信息

  • 批准号:
    10368920
  • 负责人:
  • 金额:
    $ 4.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

PROJECT ABSTRACT Investigating a molecular basis for AD subtypes using multiomic data integration and machine-learning Despite intense investigation into preclinical Alzheimer’s Disease (AD) disease models, all potential disease- modifying drugs have failed in clinical trials. Numerous genetic studies have proposed a number of biological mechanisms, however there has been no consensus on the genetic etiology of AD. This is likely because the prevailing view of AD as a singular disease is oversimplified and does not consider heterogeneous pathogenic variation in AD genetic architecture. High-throughput studies indicate that AD is a result of complex, nonlinear interactions within and between the genome, transcriptome, epigenome, and proteome. While genome-wide association studies have successfully revealed genes associated with AD, these genes explain disease in a small proportion of the patient population, and the question of “missing heritability” remains. Thus, in Aim 1, I propose using linear and nonlinear methods in an integrated multiomics framework with machine learning to identify pathways significant in AD. While almost all AD patients present the hallmark b-amyloid and neurofibrillary tangle pathology, they also present significant variability in cognitive symptoms, behaviors, and neurophysiology. Given this, I hypothesize that inter-individual variation in AD-associated and immune pathways drives different disease etiologies across the patient population culminating in a common pathophysiology. One source of heterogeneity may be in immune pathways differentially regulating neuroinflammatory response during AD. In Aim 2, I propose using an unsupervised classification approach to determine subtypes of AD based on patient similarity in pathway variation across omic levels, imaging data, and phenotypic data. Specifically, I hypothesize that pathogenic variation within innate immunity pathways plays a critical role in driving different disease etiologies between patients. In aim 3, I propose characterizing each omic subtype by generating protein interaction networks for drug target prioritization. Knowledge from these aims will inform a shift in the current AD drug development paradigm by informing a precision medicine approach to target specific omic subtypes of AD instead of a “one size fits all” approach that has failed to date. Investigating genomic heterogeneity in AD through these aims has the potential to impact detection of pre-symptomatic AD individuals as well as reveal more insights into the complex genetic architecture of AD.
项目摘要 使用多组学数据集成研究 AD 亚型的分子基础 和机器学习 尽管对临床前阿尔茨海默氏病 (AD) 疾病模型进行了深入研究,但所有潜在疾病 - 修改药物在临床试验中失败了。大量的遗传学研究提出了许多生物学观点 然而,对于 AD 的遗传病因学尚未达成共识。这很可能是因为 将 AD 作为一种单一疾病的普遍观点过于简单化,并且没有考虑异质性致病因素 AD 遗传结构的变异。高通量研究表明 AD 是复杂、非线性的结果 基因组、转录组、表观基因组和蛋白质组内部和之间的相互作用。虽然全基因组 关联研究成功揭示了与 AD 相关的基因,这些基因在一定程度上解释了疾病 患者群体所占比例很小,“遗传性缺失”的问题仍然存在。因此,在目标 1 中,我 建议在集成的多组学框架中使用线性和非线性方法与机器学习 确定 AD 中重要的途径。虽然几乎所有 AD 患者都表现出标志性的 b-淀粉样蛋白和 尽管神经原纤维缠结病理学不同,但它们在认知症状、行为和认知方面也表现出显着的变异性。 神经生理学。鉴于此,我假设 AD 相关通路和免疫通路存在个体间差异 在患者群体中驱动不同的疾病病因,最终形成共同的病理生理学。一 异质性的来源可能在于免疫通路在不同时期调节神经炎症反应 广告。在目标 2 中,我建议使用无监督分类方法来根据 患者在组学水平、成像数据和表型数据的通路变异方面的相似性。具体来说,我 假设先天免疫途径中的致病变异在驱动不同的 患者之间的疾病病因。在目标 3 中,我建议通过生成蛋白质来表征每个组学亚型 药物靶点优先排序的相互作用网络。从这些目标中获得的知识将为当前 AD 的转变提供信息 药物开发范例,通过精准医学方法来针对 AD 的特定组学亚型 而不是迄今为止失败的“一刀切”方法。通过研究 AD 的基因组异质性 这些目标有可能影响 AD 症状前个体的检测,并揭示更多信息 深入了解 AD 复杂的遗传结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pankhuri Singhal其他文献

Pankhuri Singhal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pankhuri Singhal', 18)}}的其他基金

Investigating a molecular basis for Alzheimer's disease subtypes using multiomic data integration and machine-learning
使用多组数据集成和机器学习研究阿尔茨海默病亚型的分子基础
  • 批准号:
    10524780
  • 财政年份:
    2020
  • 资助金额:
    $ 4.68万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Collaborative R&D
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Operating Grants
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    $ 4.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了