Siderophore Inhibitors for Tuberculosis that Block Mycobactin Biosynthesis
阻断分枝杆菌素生物合成的结核病铁载体抑制剂
基本信息
- 批准号:10368998
- 负责人:
- 金额:$ 74.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-25 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AIDS-Related Opportunistic InfectionsAcinetobacter baumanniiAcuteAdenosineAnabolismAnti-Bacterial AgentsAntitubercular AgentsAtypical MycobacteriaBacillusBiochemicalBiochemistryBiological AssayBiological AvailabilityCellsCellular StructuresChemistryChronicCommunicable DiseasesDoseDrug InteractionsDrug KineticsDrug resistanceESKAPE pathogensEnsureEnzyme InhibitionEnzymesEscherichia coliEtiologyEvaluationExtreme drug resistant tuberculosisFluorineGenerationsGeneticGoalsInfectionIronIron Chelating AgentsKlebsiella pneumoniaeKnowledgeLeadMeasuresMicrobiologyMicronutrientsModificationMolecular ConformationMulti-Drug ResistanceMusMycobacterium tuberculosisNucleosidesOralPatientsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhosphotransferasesPropertyPseudomonas aeruginosaResearchResistanceSafetySiderophoresStructureToxic effectTuberculosisValidationWorkanalogbasecombatdesigndrug dispositiondrug metabolismefficacy studyextensive drug resistancegenetic approachgenome sequencingglobal healthimprovedin vivoinhibitorlead candidatemortalitymouse modelmultidisciplinarymutantmycobactinsnanomolarnovel therapeuticspathogenprogramsresistance frequencyresistance mechanismresistant strainsmall moleculesynergismtargeted agenttuberculosis drugsuptakewhole genome
项目摘要
SUMMARY
Mycobacterium tuberculosis (Mtb), the principal etiological agent of tuberculosis (TB), infects over one-third of
humanity and is now the leading cause of infectious disease mortality by a single pathogen. Mtb requires iron
for survival and obtains this essential micronutrient in vivo through the synthesis, secretion, and re-uptake of
siderophores or small-molecule iron chelators known as the mycobactins. In preliminary studies using a
genetic approach, we have shown mycobactin biosynthesis is essential for Mtb infection in mice. We have
synthesized a selective nanomolar inhibitor of mycobactin biosynthesis termed Sal-AMS that targets the
enzyme MbtA, responsible for the first and committed biosynthetic step of the mycobactins. The objectives of
this application are: 1) to dramatically improve upon the in vivo efficacy of our lead compound Sal-AMS
through the optimization of its pharmacokinetic parameters and potency, 2) to more deeply illuminate the
mechanism of action and resistance in Mtb, 3) to determine the safety profile and potential drug-drug
interactions, and 4) to identify interactive effects with other TB drugs (i.e. synergy). We will accomplish the
overall objectives of this application by pursuing three specific aims. In aim 1, we will carry out an iterative
structure-based medicinal chemistry program to concurrently optimize pharmacokinetic (PK) parameters and
whole-cell activity using a combination of approaches including fluorination, structural simplification of the
nucleoside, and introduction of conformation constraints into the inhibitor. In aim 2, we will perform biochemical
and cellular studies to evaluate enzyme inhibition, target engagement, cellular accumulation, and whole-cell
activity against Mtb as well as drug-resistant strains. Generation of resistant strains followed by whole-genome
sequencing will be used to characterize potential resistance mechanisms and determine the resistance
frequency. Finally, combination studies with various first and second-line TB drugs will be undertaken to
assess potential for synergy. In aim 3, the siderophore inhibitors will be assessed in vivo to determine their
complete pharmacokinetic parameters with a goal to improve on the volume of distribution (Vd), intrinsic
clearance (CL), and bioavailability (F). We will conduct chronic toxicity studies and evaluate compounds
against a panel of assays (hERG, CYP inhibition, kinase panel) to ensure safety and selectivity. In vivo
efficacy studies will be done using a murine model of TB infection.
摘要
结核分枝杆菌(Mtb)是结核病(TB)的主要病原体,感染了超过三分之一的
目前已成为单一病原体导致传染病死亡的主要原因。MTB需要铁
并通过合成、分泌和重新摄取体内这种必需的微量营养素
铁载体或称为分枝杆菌蛋白的小分子铁络合剂。在初步研究中,使用
遗传方法,我们已经证明了mycobactin的生物合成对于小鼠的结核分枝杆菌感染是必不可少的。我们有
合成了一种选择性的霉菌蛋白生物合成纳米分子抑制剂SAL-AMS,其靶向是
MBTA酶,负责分枝杆菌菌素生物合成的第一步和关键步骤。的目标
这一应用是:1)显著提高我们的先导化合物SAL-AMS的体内疗效
通过对其药代动力学参数和效价的优化,2)更深入地阐明
结核分枝杆菌的作用和耐药机制,3)确定安全性和潜在的药物
相互作用,以及4)确定与其他结核病药物的相互作用效果(即协同作用)。我们将完成
通过追求三个具体目标,实现这一申请的总体目标。在目标1中,我们将进行迭代
基于结构的药物化学程序同时优化药代动力学(PK)参数和
使用包括氟化、结构简化等方法组合的全细胞活性
核苷,以及在抑制剂中引入构象约束。在目标2中,我们将进行生化
和细胞研究,以评估酶抑制、靶点参与、细胞积累和全细胞
对结核分枝杆菌和耐药菌株的活性。耐药株的产生和全基因组
测序将用于表征潜在的抗性机制并确定抗性
频率最后,将进行与各种一线和二线结核病药物的联合研究,以
评估协同效应的潜力。在目标3中,铁载体抑制剂将在体内进行评估,以确定它们的
完整的药动学参数,目标是改善体内分布体积(Vd),
利用度(CL)和生物利用度(F)。我们将进行慢性毒性研究和评估化合物
对照一组检测(HERG、CYP抑制、激酶组),以确保安全性和选择性。活体内
疗效研究将使用结核病感染的小鼠模型进行。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesis and biological evaluation of orally active prodrugs and analogs of para-aminosalicylic acid (PAS).
- DOI:10.1016/j.ejmech.2022.114201
- 发表时间:2022-03-15
- 期刊:
- 影响因子:6.7
- 作者:Hegde PV;Howe MD;Zimmerman MD;Boshoff HIM;Sharma S;Remache B;Jia Z;Pan Y;Baughn AD;Dartois V;Aldrich CC
- 通讯作者:Aldrich CC
Polyfluorinated salicylic acid analogs do not interfere with siderophore biosynthesis.
多氟化水杨酸类似物不会干扰铁载体生物合成。
- DOI:10.1016/j.tube.2023.102346
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Hegde,Pooja;Orimoloye,MoyosoreO;Sharma,Sachin;Engelhart,CurtisA;Schnappinger,Dirk;Aldrich,CourtneyC
- 通讯作者:Aldrich,CourtneyC
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Courtney C Aldrich其他文献
Going Viral.
病毒式传播。
- DOI:
10.1021/acsinfecdis.5b00098 - 发表时间:
2015 - 期刊:
- 影响因子:5.3
- 作者:
Kristen N Kindrachuk;Courtney C Aldrich - 通讯作者:
Courtney C Aldrich
Antimetabolite poisoning of cofactor biosynthesis.
辅因子生物合成的抗代谢物中毒。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Leonardo K Martinelli;Courtney C Aldrich - 通讯作者:
Courtney C Aldrich
Courtney C Aldrich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Courtney C Aldrich', 18)}}的其他基金
Optimization of rifamycins to overcome intrinsic resistance of nontuberculous mycobacteria to improve treatment of NTM lung disease
优化利福霉素以克服非结核分枝杆菌的内在耐药性,改善 NTM 肺病的治疗
- 批准号:
10713137 - 财政年份:2023
- 资助金额:
$ 74.54万 - 项目类别:
Overcoming Pyrazinamide Resistance with Pyrazinoate-Cephalosporin Conjugates
用吡嗪酸-头孢菌素缀合物克服吡嗪酰胺耐药性
- 批准号:
10088387 - 财政年份:2020
- 资助金额:
$ 74.54万 - 项目类别:
Overcoming Pyrazinamide Resistance with Pyrazinoate-Cephalosporin Conjugates
用吡嗪酸-头孢菌素缀合物克服吡嗪酰胺耐药性
- 批准号:
9895968 - 财政年份:2020
- 资助金额:
$ 74.54万 - 项目类别:
Targeting Biotin Metabolism in Mycobacterium Tuberculosis
靶向结核分枝杆菌中的生物素代谢
- 批准号:
10322125 - 财政年份:2019
- 资助金额:
$ 74.54万 - 项目类别:
Targeting Biotin Metabolism in Mycobacterium Tuberculosis
靶向结核分枝杆菌中的生物素代谢
- 批准号:
10543561 - 财政年份:2019
- 资助金额:
$ 74.54万 - 项目类别:
Siderophore Inhibitors for Tuberculosis that Block Mycobactin Biosynthesis
阻断分枝杆菌素生物合成的结核病铁载体抑制剂
- 批准号:
9890916 - 财政年份:2018
- 资助金额:
$ 74.54万 - 项目类别:
2017 Tuberculosis Drug Discovery and Development Gordon Research Conference and Gordon Research Seminar
2017结核病药物发现与开发戈登研究大会暨戈登研究研讨会
- 批准号:
9330545 - 财政年份:2017
- 资助金额:
$ 74.54万 - 项目类别:
A fluorescence displacement assay for BioA: An enzyme involved in biotin biosynth
BioA 的荧光置换测定:一种参与生物素生物合成的酶
- 批准号:
8262096 - 财政年份:2012
- 资助金额:
$ 74.54万 - 项目类别:
A Fluorescence Displacement Assay for the Biotin Biosynthetic Enzyme BioA
生物素生物合成酶 BioA 的荧光置换测定
- 批准号:
8403185 - 财政年份:2012
- 资助金额:
$ 74.54万 - 项目类别:
相似海外基金
Isolation and characterisation of monoclonal antibodies for the treatment or prevention of antibiotic resistant Acinetobacter baumannii infections
用于治疗或预防抗生素耐药鲍曼不动杆菌感染的单克隆抗体的分离和表征
- 批准号:
MR/Y008693/1 - 财政年份:2024
- 资助金额:
$ 74.54万 - 项目类别:
Research Grant
Generative machine learning for narrow spectrum antibiotic discovery against Acinetobacter baumannii
生成机器学习用于发现针对鲍曼不动杆菌的窄谱抗生素
- 批准号:
477936 - 财政年份:2023
- 资助金额:
$ 74.54万 - 项目类别:
Operating Grants
Conserved structural dynamics of outer-membrane channels in Acinetobacter baumannii as potential drug targets
鲍曼不动杆菌外膜通道的保守结构动力学作为潜在的药物靶点
- 批准号:
494854 - 财政年份:2023
- 资助金额:
$ 74.54万 - 项目类别:
Operating Grants
Defining key players at the host-pathogen interface during Acinetobacter baumannii infection
定义鲍曼不动杆菌感染期间宿主-病原体界面的关键参与者
- 批准号:
488684 - 财政年份:2023
- 资助金额:
$ 74.54万 - 项目类别:
Operating Grants
Study of clinically over-expressed and chimeric RND multidrug efflux pumps from Acinetobacter baumannii and Pseudomonas aeruginosa
鲍曼不动杆菌和铜绿假单胞菌临床过表达和嵌合 RND 多药外排泵的研究
- 批准号:
23K14346 - 财政年份:2023
- 资助金额:
$ 74.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Biomimetic Macrophage Membrane-Coated Nanosponges: A Novel Therapeutic for Multidrug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Hospital-Associated Pneumonia
仿生巨噬细胞膜包被的纳米海绵:一种治疗多重耐药铜绿假单胞菌和鲍曼不动杆菌医院相关肺炎的新疗法
- 批准号:
10674406 - 财政年份:2023
- 资助金额:
$ 74.54万 - 项目类别:
Using strain history to improve prediction of the evolution of antimicrobial resistance in Acinetobacter baumannii
利用菌株历史改进对鲍曼不动杆菌抗菌药物耐药性演变的预测
- 批准号:
10677362 - 财政年份:2023
- 资助金额:
$ 74.54万 - 项目类别:
Inhibitors of adaptive efflux mediated resistance in Acinetobacter baumannii
鲍曼不动杆菌适应性外排介导的耐药性抑制剂
- 批准号:
10625029 - 财政年份:2023
- 资助金额:
$ 74.54万 - 项目类别:
Identifying niche specific adaptations in Acinetobacter baumannii
鉴定鲍曼不动杆菌的生态位特异性适应
- 批准号:
10596620 - 财政年份:2022
- 资助金额:
$ 74.54万 - 项目类别:
Identifying niche specific adaptations in Acinetobacter baumannii
鉴定鲍曼不动杆菌的生态位特异性适应
- 批准号:
10449699 - 财政年份:2022
- 资助金额:
$ 74.54万 - 项目类别: