Optimization of rifamycins to overcome intrinsic resistance of nontuberculous mycobacteria to improve treatment of NTM lung disease

优化利福霉素以克服非结核分枝杆菌的内在耐药性,改善 NTM 肺病的治疗

基本信息

项目摘要

ABSTRACT Non-tuberculosis mycobacteria (NTM) are ubiquitous environmental bacteria comprising rapid- and slow- growing (RGM and SGM) opportunistic pathogens and causing tuberculosis (TB)-like lung disease in patients with pre-existing lung conditions or compromised immunity. The most frequently encountered RGM and SGM are Mycobacterium abscessus and the M. avium complex (MAC), respectively. Other clinically important NTM include M. fortuitum and M. chelonae (RGM), and M. kansasii, M. genavense, M. xenopi, and M. simiae (SGM). The often multiyear-long treatment consists of mostly repurposed and underperforming antibiotic combinations. For many NTM diseases, there is no reliable curative regimen and mortality is high Our overarching goal is to optimize rifamycins to overcome intrinsic resistance and improve treatment of NTM lung disease. Rifampicin (RIF) is the pillar of TB therapy owing to its exquisite potency against the obligate pathogen M. tuberculosis (Mtb), favorable pharmacokinetics and excellent penetration to the sites of disease. Although RIF is recommended for the treatment of all SGM pulmonary diseases but M. simiae, its therapeutic utility has not been established except for M. kansasii disease, in line with RIF being similarly potent against M. kansasii and Mtb but poorly active against all other NTMs. Rifamycins do not achieve acceptable efficacy against most NTM diseases due to intrinsic bacterial resistance not associated with polymorphisms or mutations in their target, the RpoB subunit of the RNA polymerase. Rather, we have shown that M. abscessus undergoes intrabacterial metabolism by rifamycin monooxygenase(s) (ROX) and ADP-ribosylase (Arr). Through systematic genomics searches, we have identified these metabolic enzymes in all major RGM and several SGM. M. kansassii, in line with its favorable response to rifampicin treatment, is Arr-negative. Rifamycin glycosylases and phosphorylases, discovered in other bacteria, are potential additional candidates contributing to intrinsic resistance in some NTM. We propose to characterize the species-specific rifamycin resistome of NTMs and exploit this knowledge to overcome intrinsic resistance and rationally optimize the rifamycin class to improve the treatment of NTM lung disease. Using ROX-resistant rifabutin (RBT) as chemical starting point in preliminary studies, we have blocked ADP-ribosylation, resulting in a dramatic potency improvement against M. abscessus, similar to that of RIF against Mtb (which does not harbor ROX or Arr). We will expand this approach to appropriate RGM and SGM species as guided by resistome findings. To deliver a preclinical development candidate for the treatment of M. abscessus and other Arr-positive NTM lung diseases, medicinal chemistry efforts will focus on reducing plasma protein binding and removing drug-drug interactions due to cytochrome P450 induction, while maintaining potency and favorable penetration into lung lesions. Through combination studies in vitro and in mouse models, we will identify best partner drugs to deliver all-oral bactericidal rifamycin-based combinations that can improve cure rates and shorten treatment duration.
摘要 非结核分枝杆菌(NTM)是普遍存在的环境细菌,包括快速和慢速- 生长(RGM和SGM)机会性病原体,并在患者中引起结核病(TB)样肺病 肺部疾病或免疫力低下的病人最常见的RGM和SGM 分别是分枝杆菌和M. Avium complex(MAC)。其他临床重要NTM 包括M. fortutuplant和M. chelonae(RGM)和M. kansasii,M. genavense,M. xenopi和M.猴(SGM)。 通常长达多年的治疗主要包括重新利用和表现不佳的抗生素组合。 对于许多NTM疾病,没有可靠的治疗方案,死亡率很高。 优化利福霉素以克服内在耐药性并改善NTM肺病的治疗。 利福平(RIF)因其对专性病原体M的强效作用而成为结核病治疗的支柱。 结核病(Mtb),有利的药代动力学和良好的渗透到疾病部位。虽然RIF 推荐用于治疗除M.猿猴,其治疗效用没有 除了M之外,kansasii病,与RIF对M. Kansasii和 结核分枝杆菌,但对所有其他非结核分枝杆菌的活性较差。利福霉素对大多数NTM没有达到可接受的疗效 由于与其靶点的多态性或突变无关的内在细菌耐药性引起的疾病, RNA聚合酶的RpoB亚基。相反,我们已经表明,M。细菌内注射 通过利福霉素单加氧酶(ROX)和ADP-核糖基酶(Arr)代谢。通过系统的基因组学 搜索,我们已经确定了这些代谢酶在所有主要的RGM和几个SGM。M. kansassii,in line 对利福平治疗有良好的反应,是Arr阴性。利福霉素糖基化酶和磷酸化酶, 在其他细菌中发现的,是潜在的其他候选人,有助于在一些NTM的内在耐药性。 我们建议描述NTMs的物种特异性利福霉素耐药基因组,并利用这一知识, 克服内在耐药性,合理优化利福霉素种类,提高NTM肺的治疗效果 疾病在初步研究中,我们使用抗ROX的利福必妥(RBT)作为化学起点, ADP-核糖基化,导致对M.类似于RIF的Risessus 针对Mtb(其不窝藏ROX或Arr)。我们将把这种方法扩展到适当的RGM和SGM 根据耐药组发现指导的物种。为治疗M提供临床前开发候选药物。 肺结核和其他Arr阳性NTM肺病,药物化学工作将集中在减少血浆 蛋白质结合并消除由于细胞色素P450诱导引起的药物-药物相互作用,同时维持 效力和有利地渗透到肺部病变中。通过体外和小鼠模型的联合研究, 我们将确定最佳的合作伙伴药物,提供所有口服杀菌利福霉素为基础的组合,可以改善 提高治愈率,缩短疗程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Courtney C Aldrich其他文献

Going Viral.
病毒式传播。
  • DOI:
    10.1021/acsinfecdis.5b00098
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Kristen N Kindrachuk;Courtney C Aldrich
  • 通讯作者:
    Courtney C Aldrich
Antimetabolite poisoning of cofactor biosynthesis.
辅因子生物合成的抗代谢物中毒。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leonardo K Martinelli;Courtney C Aldrich
  • 通讯作者:
    Courtney C Aldrich

Courtney C Aldrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Courtney C Aldrich', 18)}}的其他基金

Overcoming Pyrazinamide Resistance with Pyrazinoate-Cephalosporin Conjugates
用吡嗪酸-头孢菌素缀合物克服吡嗪酰胺耐药性
  • 批准号:
    10088387
  • 财政年份:
    2020
  • 资助金额:
    $ 85.76万
  • 项目类别:
Overcoming Pyrazinamide Resistance with Pyrazinoate-Cephalosporin Conjugates
用吡嗪酸-头孢菌素缀合物克服吡嗪酰胺耐药性
  • 批准号:
    9895968
  • 财政年份:
    2020
  • 资助金额:
    $ 85.76万
  • 项目类别:
Targeting Biotin Metabolism in Mycobacterium Tuberculosis
靶向结核分枝杆菌中的生物素代谢
  • 批准号:
    10322125
  • 财政年份:
    2019
  • 资助金额:
    $ 85.76万
  • 项目类别:
Targeting Biotin Metabolism in Mycobacterium Tuberculosis
靶向结核分枝杆菌中的生物素代谢
  • 批准号:
    10543561
  • 财政年份:
    2019
  • 资助金额:
    $ 85.76万
  • 项目类别:
Siderophore Inhibitors for Tuberculosis that Block Mycobactin Biosynthesis
阻断分枝杆菌素生物合成的结核病铁载体抑制剂
  • 批准号:
    9890916
  • 财政年份:
    2018
  • 资助金额:
    $ 85.76万
  • 项目类别:
Siderophore Inhibitors for Tuberculosis that Block Mycobactin Biosynthesis
阻断分枝杆菌素生物合成的结核病铁载体抑制剂
  • 批准号:
    10368998
  • 财政年份:
    2018
  • 资助金额:
    $ 85.76万
  • 项目类别:
2017 Tuberculosis Drug Discovery and Development Gordon Research Conference and Gordon Research Seminar
2017结核病药物发现与开发戈登研究大会暨戈登研究研讨会
  • 批准号:
    9330545
  • 财政年份:
    2017
  • 资助金额:
    $ 85.76万
  • 项目类别:
iTC200 MicroCalorimetry Cell Control Unit
iTC200 微量热池控制单元
  • 批准号:
    8639053
  • 财政年份:
    2014
  • 资助金额:
    $ 85.76万
  • 项目类别:
A fluorescence displacement assay for BioA: An enzyme involved in biotin biosynth
BioA 的荧光置换测定:一种参与生物素生物合成的酶
  • 批准号:
    8262096
  • 财政年份:
    2012
  • 资助金额:
    $ 85.76万
  • 项目类别:
A Fluorescence Displacement Assay for the Biotin Biosynthetic Enzyme BioA
生物素生物合成酶 BioA 的荧光置换测定
  • 批准号:
    8403185
  • 财政年份:
    2012
  • 资助金额:
    $ 85.76万
  • 项目类别:

相似海外基金

SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
  • 批准号:
    2307983
  • 财政年份:
    2023
  • 资助金额:
    $ 85.76万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了