Differentiating reward seeking and loss avoidance with reference-dependent learning models

通过参考依赖学习模型区分奖励寻求和损失避免

基本信息

项目摘要

Project Summary The differentiation between positive and negative valence is central to psychiatry. A seemingly categorical distinction between the drive toward rewards vs. the effort to avoid punishment appears central to many symptoms of psychiatric dysfunction and is evident in both how diagnostic categories are delineated and in the definition of cross-diagnostic constructs in RDoC. However, while there has been major progress in understanding how reward drives learning and actions and the underlying neural mechanisms, there has been much less progress in understanding the mechanisms by which loss and punishment affect behavior. Indeed, there has been continued controversy about whether the neural mechanisms of reward and loss are dissociable at all. Studies of the neural bases of reward seeking vs. loss avoidance have yielded mixed results, manifested both in inconsistent findings about shared vs. separate neural circuitry, and in surprising results in psychiatric populations, for instance showing reward processing abnormalities in psychiatric conditions that appear at face value to be driven by avoidance (e.g. OCD and anxiety). This has made it virtually impossible to address the critical question of defining valid measurements for reward seeking vs. loss avoidance separately, let alone for understanding the balance between them and their relation to other dimensional constructs and psychopathology. Here we address this challenge. We build on a computational framework that resolves the inconsistency in existing results by formalizing how avoiding a loss can – in certain circumstances and in some people – be reframed as a reward. Here we advance the hypothesis that using computational methods for quantifying and isolating this subjective reframing will allow us better to disentangle the relative, covert contributions of reward seeking vs. loss avoidance, and clarify their neural underpinnings. We propose to test this hypothesis by rigorously assessing the validity of the resulting measures (compared to simpler measures of overt reward and loss behavior) across tasks, measures, and test-retest replications. In particular, we address two specific aims. First, we seek to compare neural and behavioral measures of reward seeking and loss avoidance across tasks and participants using computational models and functional MRI in a large sample of participants. Second, we seek to examine individual differences in reward seeking and loss avoidance learning and their relationship to dimensions of psychiatric symptomatology using a large online sample. Both aims make use of two parallel and complementary experimental tasks which each test reward seeking, loss avoidance, and the extent to which the balance between the two is affected by differences in baseline expectations of reward or loss. Together, these studies offer an integrative computational framework to test the construct validity of measures of reward seeking and loss avoidance, the relationship between them, the new construct of their relative reframing, and how individual differences in these constructs are manifest across the population in brain and behavior.
项目摘要 正价和负价之间的区别是精神病学的核心。看似绝对的 在奖励的动力与避免惩罚的努力之间的区别似乎是许多人的核心 精神病功能障碍的症状,是诊断类别的描述和在 RDOC中跨诊断构建体的定义。但是,尽管取得了重大进展 了解奖励如何驱动学习和行动以及潜在的神经机制, 理解损失和惩罚影响行为的机制的进展要少得多。的确, 关于奖励和丧失的神经机制是否是 完全可以解散。对寻求奖励的神经基础与避免损失的研究混合了 结果表现出了关于共享与单独神经电路的不一致的发现,以及令人惊讶的 导致精神病学人群的结果,例如在精神病中显示奖励处理异常 避免驱动(例如OCD和动画)驱动的面值的条件。这做到了 几乎不可能解决定义有效测量的关键问题,以寻求奖励与损失 分别避免,更不用说了解他们与他们与其他人之间的关系 维度结构和心理病理学。在这里,我们应对这个挑战。我们以计算为基础 通过格式化避免损失的方式,可以解决现有结果的不一致的框架 - 在 在某些情况下,在某些人中 - 被重塑为奖励。在这里,我们提出了一个假设 使用计算方法来量化和隔离此主观重塑将使我们更好 解散寻求奖励与避免损失的亲戚,秘密的贡献,并确定其中立 基础。我们建议通过严格评估结果的有效性来检验这一假设 跨任务,措施和 测试重复复制。特别是,我们解决了两个具体目标。首先,我们试图比较神经和 使用计算 大量参与者样本中的模型和功能性MRI。其次,我们试图检查个人 寻求奖励和避免损失的学习及其与精神科维度的关系的差异 使用大型在线样本的症状学。两个目标都使用两个平行和完整的 每个测试奖励,避免损失以及平衡程度的实验任务 两者之间受到奖励或损失的基线期望的差异的影响。在一起,这些研究 提供一个集成的计算框架来测试奖励寻求奖励和 避免损失,他们之间的关系,其相对重新构架的新结构以及如何 这些结构中的个体差异在大脑和行为中都表现出来。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Prioritizing replay when future goals are unknown.
当未来目标未知时优先考虑重播。
  • DOI:
    10.1101/2024.02.29.582822
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sagiv,Yotam;Akam,Thomas;Witten,IlanaB;Daw,NathanielD
  • 通讯作者:
    Daw,NathanielD
Proactive and reactive construction of memory-based preferences.
基于记忆的偏好的主动和被动构建。
Context-sensitive valuation and learning.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nathaniel Douglass Daw其他文献

Nathaniel Douglass Daw的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nathaniel Douglass Daw', 18)}}的其他基金

CRCNS: Computational Foundations for Externalizing/Internalizing Psychopathology
CRCNS:外化/内化精神病理学的计算基础
  • 批准号:
    10831117
  • 财政年份:
    2023
  • 资助金额:
    $ 52.66万
  • 项目类别:
Differentiating reward seeking and loss avoidance with reference-dependent learning models
通过参考依赖学习模型区分奖励寻求和损失避免
  • 批准号:
    10015342
  • 财政年份:
    2019
  • 资助金额:
    $ 52.66万
  • 项目类别:
Differentiating reward seeking and loss avoidance with reference-dependent learning models
通过参考依赖学习模型区分奖励寻求和损失避免
  • 批准号:
    10219070
  • 财政年份:
    2019
  • 资助金额:
    $ 52.66万
  • 项目类别:
CRCNS: Representational foundations of adaptive behavior in natural and artificial
CRCNS:自然和人工适应性行为的代表性基础
  • 批准号:
    9052441
  • 财政年份:
    2015
  • 资助金额:
    $ 52.66万
  • 项目类别:
CRCNS: Representational foundations of adaptive behavior in natural and artificial
CRCNS:自然和人工适应性行为的代表性基础
  • 批准号:
    9292377
  • 财政年份:
    2015
  • 资助金额:
    $ 52.66万
  • 项目类别:
CRCNS: Computational and neural mechanisms of memory-guided decisions
CRCNS:记忆引导决策的计算和神经机制
  • 批准号:
    9098673
  • 财政年份:
    2014
  • 资助金额:
    $ 52.66万
  • 项目类别:
CRCNS: Computational and neural mechanisms of memory-guided decisions
CRCNS:记忆引导决策的计算和神经机制
  • 批准号:
    8926934
  • 财政年份:
    2014
  • 资助金额:
    $ 52.66万
  • 项目类别:
CRCNS: Computational and neural mechanisms of memory-guided decisions
CRCNS:记忆引导决策的计算和神经机制
  • 批准号:
    8837113
  • 财政年份:
    2014
  • 资助金额:
    $ 52.66万
  • 项目类别:
CRCNS: Reinforcement learning in multi-dimensional action spaces
CRCNS:多维行动空间中的强化学习
  • 批准号:
    8068884
  • 财政年份:
    2009
  • 资助金额:
    $ 52.66万
  • 项目类别:
CRCNS: Reinforcement learning in multi-dimensional action spaces
CRCNS:多维行动空间中的强化学习
  • 批准号:
    7923719
  • 财政年份:
    2009
  • 资助金额:
    $ 52.66万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
  • 批准号:
    10822202
  • 财政年份:
    2024
  • 资助金额:
    $ 52.66万
  • 项目类别:
Differences in Hospital Nursing Resources among Black-Serving Hospitals as a Driver of Patient Outcomes Disparities
黑人服务医院之间医院护理资源的差异是患者结果差异的驱动因素
  • 批准号:
    10633905
  • 财政年份:
    2023
  • 资助金额:
    $ 52.66万
  • 项目类别:
Competitive Bidding in Medicare and the Implications for Home Oxygen Therapy in COPD
医疗保险竞争性招标以及对慢性阻塞性肺病家庭氧疗的影响
  • 批准号:
    10641360
  • 财政年份:
    2023
  • 资助金额:
    $ 52.66万
  • 项目类别:
Alzheimer's Disease and Related Dementia-like Sequelae of SARS-CoV-2 Infection: Virus-Host Interactome, Neuropathobiology, and Drug Repurposing
阿尔茨海默病和 SARS-CoV-2 感染的相关痴呆样后遗症:病毒-宿主相互作用组、神经病理生物学和药物再利用
  • 批准号:
    10661931
  • 财政年份:
    2023
  • 资助金额:
    $ 52.66万
  • 项目类别:
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
  • 批准号:
    10711136
  • 财政年份:
    2023
  • 资助金额:
    $ 52.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了