Biomechanical Approaches and Technologies for Enhancing TAVR Outcomes
提高 TAVR 效果的生物力学方法和技术
基本信息
- 批准号:10449331
- 负责人:
- 金额:$ 76.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAddressAgeAgingAnatomyAortic Valve StenosisAwardBerlinBicuspidBiocompatible MaterialsBiological AssayBiomechanicsBlood PlateletsBlood VesselsCardiacCatalogsClinicalControl GroupsCoupledDataDatabasesDevicesDiseaseDisease ProgressionEnhancement TechnologyExtravasationGenderGenerationsGeometryGoalsGrowthHealthHeartHeart failureHumanImageImpairmentIn VitroIncidenceInterventionLeadLeftLifeLiquid substanceMeasurementMechanicsMedical centerMethodologyModelingMorbidity - disease rateMorphologyNoduleOperative Surgical ProceduresOutcomePacemakersPatient-Focused OutcomesPatientsPatternPerformancePhysiologicalPlant RootsPolymersPopulationProceduresPropertyProtocols documentationRiskSavingsScanningSerious Adverse EventSiliconesSiteSmall Business Technology Transfer ResearchSpecimenStentsStressStructureSubgroupSurfaceSurgical ValvesSystemTechniquesTechnologyTestingTherapeutic EmbolizationTissuesX-Ray Computed Tomographyadvanced simulationaortic valve disorderaortic valve replacementbasebicuspid aortic valvebiomechanical modelbiomechanical testcalcificationcase controldesigneffective therapyfollow-uphemodynamicshigh riskhuman modelimplantationimprovedin silicoinnovationleft ventricular assist devicemicroCTmigrationminimally invasivemortalitynext generationnoveloff-label useolder patientpatient subsetsperformance testspredictive modelingprospectiveprototypequantumreplacement tissuereplicatorsealsimulationstroke riskthrombogenesistooltotal artificial heartvalidation studiesvalve replacement
项目摘要
Project Summary
Transcatheter Aortic Valve Replacement (TAVR) has emerged as a life-saving solution for inoperable
elderly patients with calcific aortic valve disease (CAVD) and severe Aortic Stenosis (AS). However, in recent
years certain limitations and serious adverse events emerged: failed delivery due to tortuous aortic geometry
and severe valvular calcification, valve migration, conduction abnormalities, and paravalvular leaks (PVL) leading
to embolization with increased stroke risk, increasing the overall morbidity and mortality post-TAVR. Current
TAVR technology is based on tissue valves adapted to, but not specifically designed for TAVR. Those may
sustain damage during crimping and deployment, resulting in limited durability and impaired functionality. In
latest-generation TAVR devices ad hoc solutions to reduce PVL have been associated with higher incidence of
cardiac conduction abnormalities (CCAs), often leading to the need for concurrent permanent pacemaker
implantation. This may limit TAVR utility and its anticipated expansion into younger, lower risk patients, including
a BAV (bicuspid aortic valve) patients, in which off-label use of TAVR is rapidly emerging. Given the aging U.S.
population segment at high risk for AS that is expected to double by mid-century, there is a critical need for
optimizing the procedure and developing long-term TAVR technology – optimized to reduce the complications
rates while achieving better clinical outcomes. Our translational project aims to develop next generation TAVR
technology. Combining imaging, computational, and in vitro tools in a refined biomechanical analysis methodology,
an optimization approach will guide the pre-planning and tailor TAVR procedures for achieving significantly better
patient outcomes and reduce ensuing complications. We also aim to offer a disruptive technology: next generation
valves specifically optimized for TAVR. The Polynova polymeric valve was developed using our design optimization
DTE methodology under a U01 Quantum project and a current STTR award. It incorporates a novel xSIBS
hemcompatible polymer with better tolerance to crimping and deployment stresses, improved hemodynamic
performance and thromboresistance, and extended durability. Its TAVR prototypes will be rigorously tested and
further optimized.
These goals will be achieved by employing an innovative Reverse Calcification Technique (RCT) to predict
CAVD Progression. We will use patient specific reconstructed geometries from a large CAVD patient’s database
as input for refined numerical simulations. We will expand our existing large CT scans database of CAVD patients
(currently n=750), as well as utilize TAVR databases from two additional medical centers (n=293 and 94,
respectively), to catalog the disease progression to further serve to elucidate, plan and predict interventional
outcomes. Using RCT as a base for predictive models of prospective calcification growth – both in tricuspid
(TAV) and bicuspid CAVD patients, we will employ a combined in silico and in vitro biomechanical analysis that
will include detailed and refined structural, FSI (Fluid Structure Interaction) and CFD (Computational Fluid
Dynamics) simulations in the patient specific geometries reconstructed from CT scans. Heterogeneous tissue
and AVC components properties will be obtained by biomechanical testing of specimens from surgical CAVD
patients. Multiscale tissue and calcification modeling will utilize input derived from micro-CT measurements to
fine tune the models. Various CAVD stages will be studied with FSI based on the RCT models, and validated
with hemodynamics measurements in a ViVitro left heart simulator (LHS) and in fabricated 3D printed model
replicas of CAVD patients in the Vascular Simulations Replicator® system, with follow-up thrombogenicity
measurements in flow loops powered by a Berlin left ventricular assist device and SynCardia total artificial heart.
We will fine-tune the in vitro hemodynamic and durability of the Polynova polymeric TAVR valve using the above
approaches, as well a ViVitro Hi-Cycle system, and develop a dedicated design for BAV patients addressing
deployment and valve eccentricity issues. Using in silico modeling with the Living Heart Human Model (LHHM),
we will evaluate tissue strains that is predictive of CCAs and atrioventricular blockage associated with TAVR
deployment, and compare successful TAVR cases to those with CCAs and pacemaker implantation. Finally,
we will study the in vitro and in silico efficacy of pre-adherent polymeric biomaterials applied to TAVR stents in
reducing eccentricity and sealing PVL.
项目摘要
经导管主动脉瓣置换(TAVR)已成为无法手术的救生解决方案
钙化主动脉瓣疾病(CAVD)和严重主动脉狭窄(AS)的老年患者。但是,最近
年份某些局限性和严重的不良事件出现了:由于曲折主动脉几何形状而导致交付失败
以及严重的瓣膜计算,瓣膜迁移,传导异常和旁腔泄漏(PVL)领先
以增加中风风险的栓塞,增加了TAVR后的总体发病率和死亡率。当前的
TAVR技术基于适合TAVR的组织阀,但不是专门设计的。那些可以
在压接和部署期间维持损害,导致耐用性有限和功能受损。在
最新一代的TAVR设备临时解决方案减少PVL已与更高的事件有关
心脏传导异常(CCA),通常导致需要并发永久起搏器
植入。这可能会限制TAVR公用事业及其预期扩展到年轻,较低的风险患者,包括
BAV(双刺主动脉瓣)患者,其中标签不使用TAVR的患者正在迅速出现。考虑到美国老化
预计到本世纪中叶的人口段高风险,这将是至关重要的
优化程序并开发长期TAVR技术 - 优化以减少并发症
比率同时获得更好的临床结果。我们的翻译项目旨在发展下一代TAVR
技术。在精致的生物力学分析方法中结合成像,计算和体外工具,
优化方法将指导预先计划和量身定制的TAVR程序,以更好地实现
患者的结果并减少随之而来的并发症。我们还旨在提供一项破坏性技术:下一代
专门针对TAVR优化的阀。使用我们的设计优化开发了多元诺娃聚合物阀
U01量子项目和当前STTR奖项下的DTE方法论。它包含了一个小说的XSIBS
偏向性聚合物,对压接和部署胁迫的耐受性更好,血液动力学改善
性能和动力孔,并扩展耐用性。其TAVR原型将经过严格测试,并且
进一步优化。
这些目标将通过采用创新的反向钙化技术(RCT)来预测
cavd进程。我们将使用来自大型CAVD患者数据库的患者特定的重建几何形状
作为精制数值模拟的输入。我们将扩展现有的CAVD患者的大型CT扫描数据库
(目前n = 750),以及从两个其他医疗中心(n = 293和94)中使用TAVR数据库
),分类疾病的进展以进一步阐明,计划和预测介入
结果。使用RCT作为前瞻性钙化生长的预测模型的基础 - 均在三尖
(TAV)和双刺CAVD患者,我们将采用一种合并的硅和体外生物力学分析,
将包括详细和精制的结构,FSI(流体结构相互作用)和CFD(计算流体
动力学)模拟在患者特定的几何形状中从CT扫描重建。异质组织
通过对手术CAVD标本的生物力学测试,将获得AVC组件的性能
患者。多尺度组织和计算建模将利用从微CT测量到的输入到
微调模型。基于RCT模型,各种CAVD阶段将使用FSI进行研究,并验证
在左心模拟器(LHS)和制造的3D印刷模型中进行血液动力学测量
血管模拟中CAVD患者的复制品复制器系统,具有后续血栓形成性
由柏林左心室辅助装置和Syncardia供电的流动环的测量值总人工心脏。
我们将使用上面的Polynova聚合物TAVR阀的体外血液动力学和耐用性微调
方法以及Vivitro Hi-Cycle系统,并为BAV患者开发专门的设计
部署和阀门偏心问题。在活心人类模型(LHHM)中使用硅型建模,
我们将评估可预测CCA和与TAVR相关的房室阻塞的组织菌株
部署,并将成功的TAVR病例与CCA和起搏器植入的案例进行比较。最后,
我们将研究应用于TAVR支架的预粘附聚合物生物材料的体外和计算机效率
降低偏心率和密封PVL。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structural Responses of Integrated Parametric Aortic Valve in an Electro-Mechanical Full Heart Model.
- DOI:10.1007/s10439-020-02575-0
- 发表时间:2021-01
- 期刊:
- 影响因子:3.8
- 作者:Morany A;Lavon K;Bluestein D;Hamdan A;Haj-Ali R
- 通讯作者:Haj-Ali R
Fragmentation of Different Calcification Growth Patterns in Bicuspid Valves During Balloon Valvuloplasty Procedure.
球囊瓣膜成形术过程中二尖瓣不同钙化生长模式的破碎。
- DOI:10.1007/s10439-022-03115-8
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Morany,Adi;Lavon,Karin;Halevi,Rotem;Haj-Ali,Nora;Bluestein,Danny;Raanani,Ehud;Hamdan,Ashraf;Haj-Ali,Rami
- 通讯作者:Haj-Ali,Rami
Assessment of Paravalvular Leak Severity and Thrombogenic Potential in Transcatheter Bicuspid Aortic Valve Replacements Using Patient-Specific Computational Modeling.
使用患者特定计算模型评估经导管二尖瓣主动脉瓣置换术中的瓣周漏严重程度和血栓形成可能性。
- DOI:10.1007/s12265-021-10191-z
- 发表时间:2022-08
- 期刊:
- 影响因子:3.4
- 作者:Anam, Salwa B.;Kovarovic, Brandon J.;Ghosh, Ram P.;Bianchi, Matteo;Hamdan, Ashraf;Haj-Ali, Rami;Bluestein, Danny
- 通讯作者:Bluestein, Danny
Progressive Calcification in Bicuspid Valves: A Coupled Hemodynamics and Multiscale Structural Computations.
- DOI:10.1007/s10439-021-02877-x
- 发表时间:2021-12
- 期刊:
- 影响因子:3.8
- 作者:Lavon K;Morany A;Halevi R;Hamdan A;Raanani E;Bluestein D;Haj-Ali R
- 通讯作者:Haj-Ali R
A computational framework for post-TAVR cardiac conduction abnormality (CCA) risk assessment in patient-specific anatomy.
- DOI:10.1111/aor.14189
- 发表时间:2022-07
- 期刊:
- 影响因子:2.4
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANNY BLUESTEIN其他文献
DANNY BLUESTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANNY BLUESTEIN', 18)}}的其他基金
Biomechanical Approaches and Technologies for Enhancing TAVR Outcomes
提高 TAVR 效果的生物力学方法和技术
- 批准号:
10201598 - 财政年份:2018
- 资助金额:
$ 76.39万 - 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
- 批准号:
9344868 - 财政年份:2017
- 资助金额:
$ 76.39万 - 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
- 批准号:
10221033 - 财政年份:2017
- 资助金额:
$ 76.39万 - 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
- 批准号:
9903032 - 财政年份:2017
- 资助金额:
$ 76.39万 - 项目类别:
A Novel Polymeric Valve for Transcatheter Aortic Valve Replacement
用于经导管主动脉瓣置换的新型聚合物瓣膜
- 批准号:
10464978 - 财政年份:2017
- 资助金额:
$ 76.39万 - 项目类别:
Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis
血流和血小板介导的血栓形成的多尺度建模
- 批准号:
9032130 - 财政年份:2016
- 资助金额:
$ 76.39万 - 项目类别:
Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis
血流和血小板介导的血栓形成的多尺度建模
- 批准号:
9265504 - 财政年份:2016
- 资助金额:
$ 76.39万 - 项目类别:
Multiscale modeling of blood flow and clotting in cardiovascular devices
心血管设备中血流和凝血的多尺度建模
- 批准号:
8114454 - 财政年份:2011
- 资助金额:
$ 76.39万 - 项目类别:
Multiscale modeling of blood flow and clotting in cardiovascular devices
心血管设备中血流和凝血的多尺度建模
- 批准号:
8258220 - 财政年份:2011
- 资助金额:
$ 76.39万 - 项目类别:
Optimizing Cardiovascular Device Thromboresistance for Eliminating Anticoagulants
优化心血管装置的抗血栓能力以消除抗凝剂
- 批准号:
8016863 - 财政年份:2010
- 资助金额:
$ 76.39万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 76.39万 - 项目类别:
Development of a 3D neurovascular unit for in vitro modeling of subarachnoid hemorrhage and screening therapies
开发用于蛛网膜下腔出血体外建模和筛选治疗的 3D 神经血管单元
- 批准号:
10722387 - 财政年份:2023
- 资助金额:
$ 76.39万 - 项目类别:
Racially-associated MRI analysis and modeling for predicting aggressive prostate cancer
用于预测侵袭性前列腺癌的种族相关 MRI 分析和建模
- 批准号:
10659602 - 财政年份:2023
- 资助金额:
$ 76.39万 - 项目类别:
A novel bioengineering approach to restoring permanent periodontal inflammatory bone loss
一种恢复永久性牙周炎性骨质流失的新型生物工程方法
- 批准号:
10734465 - 财政年份:2023
- 资助金额:
$ 76.39万 - 项目类别:
Engineering Spatiotemporal Osteochondral Tissue Formation with Tunable 3D-Printed Scaffolds
使用可调谐 3D 打印支架工程设计时空骨软骨组织形成
- 批准号:
10373762 - 财政年份:2022
- 资助金额:
$ 76.39万 - 项目类别: