INITIATION OF THE IMMUNE RESPONSE TO ASPERGILLUS FUMIGATUS

对烟曲霉的免疫反应的启动

基本信息

  • 批准号:
    10449393
  • 负责人:
  • 金额:
    $ 67.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-06 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Invasive aspergillosis is devastating fungal infection and the most common form of mold pneumonia worldwide, with an estimated 200,000 cases annually. Aspergillus fumigatus, the most common etiologic agent of invasive aspergillosis, forms ubiquitous airborne spores that humans inhaled on daily basis. In immune competent individuals the respiratory innate immune system prevents the formation of tissue-invasive hyphae, a critical immunologic checkpoint. In patients with hematologic malignancies, in bone marrow and lung transplant recipients, and recently, in intensive care unit patients with COVID-19, numeric or functional defects in innate immune function lead to invasive disease. Despite contemporary antifungal drugs, mortality rates remain at 20- 40% in high risk groups, underscoring the need for improved understanding of the molecular and cellular basis of sterilizing immunity to advance immune-based adjunctive approaches. In the second funding period, we harnessed a fungal bioreporter that reports the mode of cell death to discover that neutrophils and monocyte-derived dendritic cells induce a regulated cell death in engulfed fungal cells. The concept that a higher eukaryote can exploit a regulated cell death machinery in a lower eukaryote is novel and, in the case of A. fumigatus, depends on host NADPH oxidase activity. NADPH oxidase-dependent fungal killing is modulated by two novel, essential intercellular crosstalk circuits that involves the early production of GM-CSF (GM-CSF circuit) and plasmacytoid dendritic cells (pDC circuit). During the next project period, we propose to gain a deeper understanding of the GM-CSF and pDC circuits. In Aim 1, we identify the essential cellular source of GM-CSF and, based on preliminary data, focus on pulmonary endothelial and epithelial cells as regulators of neutrophil-dependent fungal killing. In Aim 2, we define the pDC circuit and candidate transmitters and test models of direct or indirect activation by fungal cells or the lung inflammatory milieu. In Aim 3, we define the mechanisms by which the pDC circuit regulates neutrophils, and test its role in NAPDH oxidase assembly, activation, and neutrophil metabolism via the pentose phosphate pathway and its cooperativity with the GM-CSF circuit to mediate sterilizing immunity. The proposed studies are significant and innovative because they integrate innate immune crosstalk between the pulmonary endothelial, epithelial, and pDC compartments and infected myeloid phagocytes into a comprehensive model of respiratory immunity against mold pathogens. Understanding the induction, regulation, and participants of innate immune crosstalk addresses a critical knowledge gap that will inform immune-enhancing strategies in vulnerable patient groups.
项目摘要 侵袭性曲霉病是一种毁灭性的真菌感染,也是世界范围内最常见的霉菌性肺炎, 估计每年有20万例。烟曲霉,最常见的病原体的侵袭性 曲霉菌病,形成无处不在的空气传播的孢子,人类每天吸入。免疫功能正常 个体的呼吸先天免疫系统阻止组织侵入性菌丝的形成,这是一个关键的 免疫检查点在恶性血液病患者中,在骨髓和肺移植中 最近,在重症监护病房的COVID-19患者中,先天性心脏病的数量或功能缺陷 免疫功能导致侵袭性疾病。尽管有现代抗真菌药物,死亡率仍保持在20- 40%在高危人群中,强调需要提高对分子和细胞基础的理解 消灭免疫力来推进基于免疫的预防方法。 在第二个资助期,我们利用了一种真菌生物报告器,它报告细胞死亡的模式, 嗜中性粒细胞和单核细胞衍生的树突状细胞在吞噬的真菌细胞中诱导受调节的细胞死亡。 高等真核生物可以利用低等真核生物中受调控的细胞死亡机制的概念是新颖的 在A.烟曲霉的生长依赖于宿主NADPH氧化酶的活性。NADPH氧化酶依赖性真菌 杀伤是由两个新的,重要的细胞间串扰电路,涉及早期生产的 GM-CSF(GM-CSF回路)和浆细胞样树突状细胞(pDC回路)。 在下一个项目期间,我们建议更深入地了解GM-CSF和pDC电路。在 目的1,我们确定了GM-CSF的基本细胞来源,并在初步资料的基础上, 内皮细胞和上皮细胞作为中性粒细胞依赖性真菌杀伤的调节因子。在目标2中,我们定义了pDC 电路和候选发射器以及真菌细胞或肺直接或间接激活的测试模型 炎症环境在目标3中,我们定义了pDC回路调节中性粒细胞的机制, 测试其在NAPDH氧化酶组装、活化和中性粒细胞通过磷酸戊糖代谢中的作用 途径及其与GM-CSF回路的协同性介导杀菌免疫。拟议的研究 是重要的和创新的,因为它们整合了肺部和肺部之间的先天免疫串扰, 内皮、上皮和pDC区室和感染的髓样吞噬细胞整合到一个综合模型中 对霉菌病原体的呼吸免疫力。了解的诱导,规则,和参与者 先天免疫串扰解决了一个关键的知识缺口,这将为免疫增强策略提供信息, 弱势患者群体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TOBIAS M HOHL其他文献

TOBIAS M HOHL的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TOBIAS M HOHL', 18)}}的其他基金

The mycobiota, bone marrow transplantation, and clinical outcomes
真菌群、骨髓移植和临床结果
  • 批准号:
    10415200
  • 财政年份:
    2021
  • 资助金额:
    $ 67.85万
  • 项目类别:
The mycobiota, bone marrow transplantation, and clinical outcomes
真菌群、骨髓移植和临床结果
  • 批准号:
    10303678
  • 财政年份:
    2021
  • 资助金额:
    $ 67.85万
  • 项目类别:
Dissection of Macrophage Antifungal Activity against Aspergillus fumigatus
巨噬细胞抗烟曲霉抗真菌活性的剖析
  • 批准号:
    8584085
  • 财政年份:
    2013
  • 资助金额:
    $ 67.85万
  • 项目类别:
Initiation of the Immune Response to Aspergillus fumigatus
对烟曲霉的免疫反应的启动
  • 批准号:
    8467674
  • 财政年份:
    2011
  • 资助金额:
    $ 67.85万
  • 项目类别:
Initiation of the Immune Response to Aspergillus fumigatus
对烟曲霉的免疫反应的启动
  • 批准号:
    8274640
  • 财政年份:
    2011
  • 资助金额:
    $ 67.85万
  • 项目类别:
Initiation of the Immune Response to Aspergillus fumigatus
对烟曲霉的免疫反应的启动
  • 批准号:
    8735460
  • 财政年份:
    2011
  • 资助金额:
    $ 67.85万
  • 项目类别:
INITIATION OF THE IMMUNE RESPONSE TO ASPERGILLUS FUMIGATUS
对烟曲霉的免疫反应的启动
  • 批准号:
    10298001
  • 财政年份:
    2011
  • 资助金额:
    $ 67.85万
  • 项目类别:
Initiation of the Immune Response to Aspergillus fumigatus
对烟曲霉的免疫反应的启动
  • 批准号:
    8848751
  • 财政年份:
    2011
  • 资助金额:
    $ 67.85万
  • 项目类别:
INITIATION OF THE IMMUNE RESPONSE TO ASPERGILLUS FUMIGATUS
对烟曲霉的免疫反应的启动
  • 批准号:
    10640120
  • 财政年份:
    2011
  • 资助金额:
    $ 67.85万
  • 项目类别:
Initiation of the Immune Response to Aspergillus fumigatus
对烟曲霉的免疫反应的启动
  • 批准号:
    8194743
  • 财政年份:
    2011
  • 资助金额:
    $ 67.85万
  • 项目类别:

相似海外基金

SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
  • 批准号:
    EP/X031918/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
  • 批准号:
    EP/Y003152/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
  • 批准号:
    2329940
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
  • 批准号:
    10075892
  • 财政年份:
    2023
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
  • 批准号:
    538379-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
  • 批准号:
    10681326
  • 财政年份:
    2022
  • 资助金额:
    $ 67.85万
  • 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
  • 批准号:
    10621402
  • 财政年份:
    2022
  • 资助金额:
    $ 67.85万
  • 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
  • 批准号:
    573452-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
  • 批准号:
    10032436
  • 财政年份:
    2022
  • 资助金额:
    $ 67.85万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了