Transcriptome-wide association studies and genetic risk prediction for breast cancer integrating RNA splicing and gene expression from multiple tissues
整合来自多个组织的 RNA 剪接和基因表达的乳腺癌全转录组关联研究和遗传风险预测
基本信息
- 批准号:10456122
- 负责人:
- 金额:$ 36.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-13 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAdmixtureAffectAfrican American populationBreast Cancer DetectionBreast Cancer GeneticsBreast Cancer ModelBreast Cancer PreventionBreast Cancer Risk FactorBreast Cancer geneCalibrationCancer-Predisposing GeneCandidate Disease GeneChromosome MappingComplexCountryDNADataData SetDevelopmentDiseaseEthnic OriginEtiologyEuropeanEventExcisionGene ExpressionGenesGeneticGenetic RiskGenetic TranscriptionGenetic VariationGenotype-Tissue Expression ProjectGoalsHeritabilityInheritedIntronsJointsKnowledgeLinkage DisequilibriumMalignant NeoplasmsMethodsModelingMultiomic DataPatternPhenotypePlayPopulationRNARNA SplicingResearchRiskRisk ReductionRoleScienceSeriesSingle Nucleotide PolymorphismSpliced GenesStatistical MethodsStratificationTestingTissue SampleTissuesTrainingTranslatingUnited StatesWomanWorkbasedisease phenotypegenetic variantgenome wide association studyimprovedindividualized preventionlarge datasetsmRNA Expressionmalignant breast neoplasmnovelpolygenic risk scorerisk predictionscreeningsimulationtraittranscriptometranscriptome sequencing
项目摘要
ABSTRACT
Breast cancer is the most common cancer in women in the United States and worldwide. Although
genome-wide association studies have identified multiple loci for breast cancer, most of heritability is still
hidden. To date, transcriptome-wide association studies (TWAS) have been performed to quantify
associations of genetically predicted gene expression with breast cancer risk. Our recent work showed
that genetic variants that affect RNA splicing are very important contributors to complex traits but were
previously missed when considering the genetic effects on gene expression only. Therefore, evaluating
associations of genetically predicted splicing (as a linear combination of SNPs) with phenotypes has a
great promise to discover novel putative candidate disease genes. Splicing events in local regions (such
as intron excision clusters) can be highly correlated. However, existing statistical methods for TWAS do
not account for correlation among splicing events, and thus may result in loss of power in detecting
disease genes. Additionally, splicing levels (quantified as relative count ratios) in a gene and the overall
gene expression level have not been considered together in previous gene mapping methods. For breast
cancer prevention, stratification of women according to the risk of developing the cancer could improve
risk reduction and screening strategies by targeting those most likely to benefit. SNP-based polygenic
risk scores have been developed to predict breast cancer but their prediction accuracy remains low. To
increase prediction accuracy, there is a need to incorporate useful information from genetically predicted
expression and splicing. Recently, several transcriptome studies, such as GTEx, have collected DNA
and RNA from multiple tissue samples; integrating information across multiple tissues into TWAS could
significantly improve the identification of disease genes. In addition, African Americans (AAs) have
different linkage disequilibrium (LD) pattern from Europeans, so genetic variants that affect RNA splicing
and disease phenotypes could be ethnicity-specific. The objective of this study is to develop effective
methods for gene mapping and genetic risk prediction of complex traits such as breast cancer by
integrating multi–omics data from multiple tissues. Specifically, we will 1) develop methods for TWAS
that leverage information of RNA splicing and expression from multiple tissues and apply the methods to
identify novel breast cancer susceptibility genes; 2) develop joint polygenic risk prediction scores for
breast cancer that model different LD patterns in distinct populations (including AAs) and incorporate
information of genetically predicted splicing and gene expression from multiple tissues. We will account
for correlation among splicing events in local regions and across multiple tissues. We expect that the
proposed methods have higher power in gene mapping or higher accuracy in prediction of breast cancer
than existing methods. The proposed methods can also be applied to other complex diseases.
摘要
乳腺癌是美国和全世界女性最常见的癌症。虽然
全基因组关联研究已经确定了乳腺癌的多个位点,但大部分遗传性仍然是
隐藏到目前为止,已经进行了全转录组关联研究(TWAS),
基因预测的基因表达与乳腺癌风险的关系。我们最近的研究表明
影响RNA剪接的遗传变异是复杂性状的重要贡献者,
以前只考虑基因表达的遗传效应时忽略了这一点。因此,评估
基因预测的剪接(作为SNP的线性组合)与表型的关联,
发现新的假定候选疾病基因的巨大希望。局部区域中的剪接事件(例如
如内含子切除簇)可以高度相关。然而,TWAS的现有统计方法确实
没有考虑到拼接事件之间的相关性,因此可能导致检测能力丧失
疾病基因此外,基因中的剪接水平(量化为相对计数比率)和总体基因中的剪接水平(量化为相对计数比率)也可以被测量。
在以前的基因定位方法中,基因表达水平没有被一起考虑。乳腺
癌症预防,根据患癌症的风险对妇女进行分层,
通过针对最有可能受益的人群实施风险降低和筛查战略。SNP多基因
已经开发了风险评分来预测乳腺癌,但其预测准确性仍然很低。到
为了提高预测准确性,需要结合来自遗传预测有用信息
表达和剪接。最近,几个转录组研究,如GTEx,收集了DNA
以及来自多个组织样本的RNA;将多个组织的信息整合到TWAS中可以
大大提高了对疾病基因的识别。此外,非裔美国人(AAs)
与欧洲人不同的连锁不平衡(LD)模式,因此影响RNA剪接的遗传变异
并且疾病表型可能是种族特异性的。本研究的目的是开发有效的
用于基因定位和复杂性状如乳腺癌的遗传风险预测的方法,
整合来自多个组织的多组学数据。具体来说,我们将1)开发TWAS的方法
利用来自多个组织的RNA剪接和表达的信息,并将这些方法应用于
识别新的乳腺癌易感基因; 2)开发联合多基因风险预测评分,
在不同人群(包括AA)中模拟不同LD模式的乳腺癌,
来自多个组织的遗传预测剪接和基因表达的信息。我们会考虑
用于局部区域和跨多个组织的剪接事件之间的相关性。我们预计
所提出的方法在基因定位中具有更高的能力或在预测乳腺癌中具有更高的准确性
比现有的方法。所提出的方法也可以应用于其他复杂疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guimin Gao其他文献
Guimin Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guimin Gao', 18)}}的其他基金
Transcriptome-wide association studies and genetic risk prediction for breast cancer integrating RNA splicing and gene expression from multiple tissues
整合来自多个组织的 RNA 剪接和基因表达的乳腺癌全转录组关联研究和遗传风险预测
- 批准号:
10017927 - 财政年份:2019
- 资助金额:
$ 36.18万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
7429818 - 财政年份:2007
- 资助金额:
$ 36.18万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
7849472 - 财政年份:2007
- 资助金额:
$ 36.18万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
7991432 - 财政年份:2007
- 资助金额:
$ 36.18万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
7259849 - 财政年份:2007
- 资助金额:
$ 36.18万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
8072710 - 财政年份:2007
- 资助金额:
$ 36.18万 - 项目类别:
Haplotyping and QTL Mapping in Pedigrees with Missing Data
缺失数据谱系的单倍型分析和 QTL 定位
- 批准号:
7628936 - 财政年份:2007
- 资助金额:
$ 36.18万 - 项目类别:
相似海外基金
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10818088 - 财政年份:2023
- 资助金额:
$ 36.18万 - 项目类别:
Admixture Mapping of Coronary Heart Disease and Associated Metabolomic Markers in African Americans
非裔美国人冠心病和相关代谢组标记物的混合图谱
- 批准号:
10571022 - 财政年份:2023
- 资助金额:
$ 36.18万 - 项目类别:
Whole Genome Sequencing and Admixture Analyses of Neuropathologic Traits in Diverse Cohorts in USA and Brazil
美国和巴西不同群体神经病理特征的全基因组测序和混合分析
- 批准号:
10590405 - 财政年份:2023
- 资助金额:
$ 36.18万 - 项目类别:
NSF Postdoctoral Fellowship in Biology: Coalescent Modeling of Sex Chromosome Evolution with Gene Flow and Analysis of Sexed-versus-Gendered Effects in Human Admixture
NSF 生物学博士后奖学金:性染色体进化与基因流的合并模型以及人类混合中性别与性别效应的分析
- 批准号:
2305910 - 财政年份:2023
- 资助金额:
$ 36.18万 - 项目类别:
Fellowship Award
Admixture mapping of mosaic copy number alterations for identification of cancer drivers
用于识别癌症驱动因素的马赛克拷贝数改变的混合图谱
- 批准号:
10608931 - 财政年份:2022
- 资助金额:
$ 36.18万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10656719 - 财政年份:2022
- 资助金额:
$ 36.18万 - 项目类别:
Genealogical ancestors, admixture, and population history
家谱祖先、混合和人口历史
- 批准号:
2116322 - 财政年份:2021
- 资助金额:
$ 36.18万 - 项目类别:
Standard Grant
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10307040 - 财政年份:2021
- 资助金额:
$ 36.18万 - 项目类别:
Admixture analysis of acute lymphoblastic leukemia in African American children: the ADMIRAL Study
非裔美国儿童急性淋巴细胞白血病的混合分析:ADMIRAL 研究
- 批准号:
10307680 - 财政年份:2021
- 资助金额:
$ 36.18万 - 项目类别: