A Novel Semi-autonomous Surgeon-in-the-loop in situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries
一种新型半自主外科医生在环原位机器人生物打印系统,用于体积肌肉丢失损伤的功能和美容恢复
基本信息
- 批准号:10473273
- 负责人:
- 金额:$ 135.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAbateAddressAdhesionsAlgorithmsAnatomic SurfaceAnatomyBiochemicalBiophysicsBioreactorsClinicalComputer AssistedCosmeticsCuesCustomDepositionEngineeringEnsureFailureFeedbackGeometryGoalsHuman bodyIn SituIn VitroInjuryInstitutesIntuitionLeadMonitorMotionMuscleMusculoskeletalNatural regenerationOperative Surgical ProceduresOrganPatientsPrintingProceduresProcessResolutionRoboticsSafetySignal TransductionSurfaceSurgeonSurgical complicationSurgical suturesSystemTimeTissue EngineeringTissue constructsTissuesbasebioinkbioprintingdesignfunctional restorationhuman tissuehydrogel scaffoldimplantationimprovedinjuredinnovationinstrumentloss of functionmultidisciplinarymuscle engineeringmusculoskeletal injurynovelpain reductionrestorationrobotic systemsuccesstissue regenerationvolumetric muscle losswound
项目摘要
Summary/Abstract:
Our long-goal is to develop an unprecedented semi-autonomous surgeon-in-the-loop surgical robotic
system and complementary computer-assisted algorithms to enable an intuitive in situ robotic
bioprinting of human tissues and organs. More specifically, using this extrusion-based bioprinting system, a
surgeon can (i) first utilize a high-resolution three-dimensional (3D) point cloud camera to plan an arbitrary spatial
printing geometry on the target anatomical surface, (ii) co-operate with a robotic system to manipulate a custom-
designed bioprinting instrument to precisely follow the planned printing geometry, and (iii) perform an intuitive
and precise deposition of engineered bioinks to make tissue constructs on the target anatomical surface, while
(iv) directly control and monitor the printing process to ensure the safety and success of the procedure. The
focus of this proposal is simultaneous functional and cosmetic restoration of large volumetric muscle
loss (VML) injuries by utilizing a novel engineered bioink- developed by our collaborators at the Terasaki
Institute of Biomedical Innovation, a complementary robotic bioprinting system, and intuitive computer-
assisted algorithms.
Severe musculoskeletal injuries can lead to VML, where extensive musculoskeletal damage and tissue loss
result in permanent loss of function. In small-scale injuries or strains, muscle is capable of endogenous
regeneration and complete functional restoration. However, this ability is abated in VML, where the native
biophysical and biochemical signaling cues are no longer present to facilitate tissue regeneration. Current state-
of-the-art in vitro tissue engineering VML treatment procedures suffer from various issues including (i) prolonged
culturing period in bioreactors demanding functionality enhancement prior to implantation in the body; (ii)
adhesion failure of in vitro 3D printed hydrogel scaffolds to the remnant muscle, whether injected, sutured, or
placed into the wound; and (iii) inability to be printed precisely in irregular curved 3D surfaces of large VML
injuries.
It is our central hypothesis that the proposed semi-autonomous robotic bioprinting system can collectively
address the mentioned limitations of the current state-of-the-art solutions by (i) reducing complexity, surgical
time, and complications associated with current VML treatments, (ii) immediately delivering and in situ printing
of appropriate bioinks to the target anatomy and utilizing the human body as a natural bioreactor to induce tissue
maturation and function, and (iii) providing real-time feedback on the 3D bioprinted constructs as well as the
surgeon’s and patient’s motions to ensure precision of the bioprinting procedure for simultaneous functional and
cosmetic restoration of the injured muscle. The proposed project is multidisciplinary and bridges the current gap
between the robotic surgery, tissue engineering, and bioprinting fields. The contribution is significant, high
impact, and innovative and can revolutionize the current clinical paradigm.
摘要/文摘:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farshid Alambeigi其他文献
Farshid Alambeigi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farshid Alambeigi', 18)}}的其他基金
A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
- 批准号:
10742476 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10218941 - 财政年份:2021
- 资助金额:
$ 135.41万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10541197 - 财政年份:2021
- 资助金额:
$ 135.41万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10374927 - 财政年份:2021
- 资助金额:
$ 135.41万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 135.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 135.41万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 135.41万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 135.41万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 135.41万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 135.41万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 135.41万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 135.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 135.41万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 135.41万 - 项目类别:
Standard Grant














{{item.name}}会员




