A Novel Semi-autonomous Surgeon-in-the-loop in situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries
一种新型半自主外科医生在环原位机器人生物打印系统,用于体积肌肉丢失损伤的功能和美容恢复
基本信息
- 批准号:10473273
- 负责人:
- 金额:$ 135.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAbateAddressAdhesionsAlgorithmsAnatomic SurfaceAnatomyBiochemicalBiophysicsBioreactorsClinicalComputer AssistedCosmeticsCuesCustomDepositionEngineeringEnsureFailureFeedbackGeometryGoalsHuman bodyIn SituIn VitroInjuryInstitutesIntuitionLeadMonitorMotionMuscleMusculoskeletalNatural regenerationOperative Surgical ProceduresOrganPatientsPrintingProceduresProcessResolutionRoboticsSafetySignal TransductionSurfaceSurgeonSurgical complicationSurgical suturesSystemTimeTissue EngineeringTissue constructsTissuesbasebioinkbioprintingdesignfunctional restorationhuman tissuehydrogel scaffoldimplantationimprovedinjuredinnovationinstrumentloss of functionmultidisciplinarymuscle engineeringmusculoskeletal injurynovelpain reductionrestorationrobotic systemsuccesstissue regenerationvolumetric muscle losswound
项目摘要
Summary/Abstract:
Our long-goal is to develop an unprecedented semi-autonomous surgeon-in-the-loop surgical robotic
system and complementary computer-assisted algorithms to enable an intuitive in situ robotic
bioprinting of human tissues and organs. More specifically, using this extrusion-based bioprinting system, a
surgeon can (i) first utilize a high-resolution three-dimensional (3D) point cloud camera to plan an arbitrary spatial
printing geometry on the target anatomical surface, (ii) co-operate with a robotic system to manipulate a custom-
designed bioprinting instrument to precisely follow the planned printing geometry, and (iii) perform an intuitive
and precise deposition of engineered bioinks to make tissue constructs on the target anatomical surface, while
(iv) directly control and monitor the printing process to ensure the safety and success of the procedure. The
focus of this proposal is simultaneous functional and cosmetic restoration of large volumetric muscle
loss (VML) injuries by utilizing a novel engineered bioink- developed by our collaborators at the Terasaki
Institute of Biomedical Innovation, a complementary robotic bioprinting system, and intuitive computer-
assisted algorithms.
Severe musculoskeletal injuries can lead to VML, where extensive musculoskeletal damage and tissue loss
result in permanent loss of function. In small-scale injuries or strains, muscle is capable of endogenous
regeneration and complete functional restoration. However, this ability is abated in VML, where the native
biophysical and biochemical signaling cues are no longer present to facilitate tissue regeneration. Current state-
of-the-art in vitro tissue engineering VML treatment procedures suffer from various issues including (i) prolonged
culturing period in bioreactors demanding functionality enhancement prior to implantation in the body; (ii)
adhesion failure of in vitro 3D printed hydrogel scaffolds to the remnant muscle, whether injected, sutured, or
placed into the wound; and (iii) inability to be printed precisely in irregular curved 3D surfaces of large VML
injuries.
It is our central hypothesis that the proposed semi-autonomous robotic bioprinting system can collectively
address the mentioned limitations of the current state-of-the-art solutions by (i) reducing complexity, surgical
time, and complications associated with current VML treatments, (ii) immediately delivering and in situ printing
of appropriate bioinks to the target anatomy and utilizing the human body as a natural bioreactor to induce tissue
maturation and function, and (iii) providing real-time feedback on the 3D bioprinted constructs as well as the
surgeon’s and patient’s motions to ensure precision of the bioprinting procedure for simultaneous functional and
cosmetic restoration of the injured muscle. The proposed project is multidisciplinary and bridges the current gap
between the robotic surgery, tissue engineering, and bioprinting fields. The contribution is significant, high
impact, and innovative and can revolutionize the current clinical paradigm.
摘要/摘要:
我们的长期目标是发展一个前所未有的半自治外科医生
系统和完整的计算机辅助算法,以实现直观的原位机器人
人体组织和器官的生物打印。更具体地说,使用此基于扩展的生物打印系统,一个
外科医生可以(i)首先使用高分辨率的三维(3D)点云摄像头来计划任意空间
目标解剖表面上的印刷几何形状,(ii)与机器人系统合作,以操纵定制
设计生物打印仪器以精确遵循计划的印刷几何形状,(iii)执行直观
并精确地沉积工程生物学以在目标解剖表面制造组织构建体,而
(iv)直接控制和监视打印过程,以确保程序的安全性和成功。
该提案的重点是简单的功能和整容恢复大容量的肌肉
损失(VML)通过使用我们在Terasaki的合作者开发的新型生物互联
生物医学创新研究所,完整的机器人生物打印系统和直观的计算机 -
辅助算法。
严重的肌肉骨骼损伤可能导致VML,在那里肌肉骨骼损伤和组织损失广泛
导致永久性功能丧失。在小规模受伤或菌株中,肌肉能够内源性
再生和完整的功能恢复。但是,这种能力在vml中融合
生物物理和生化信号提示不再存在以促进组织再生。当前状态 -
ART体外组织工程VML治疗程序遭受了各种问题,包括(i)延长
生物反应器的培养期要求在体内植入之前提高功能性增强; (ii)
体外3D印刷水凝胶支架的粘附故障,无论是注射,缝合还是
放入伤口; (iii)无法精确印刷在大VML的不规则弯曲的3D表面
受伤。
我们的核心假设是,提出的半自治机器人生物打印系统可以集体
通过(i)降低复杂性,外科手术来解决当前最新解决方案的限制
时间和与当前VML治疗相关的并发症,(ii)立即交付和原位印刷
对目标解剖结构进行适当的生物键,并使用人体作为天然生物反应器诱导组织
成熟和功能,以及(iii)对3D生物打印结构以及
外科医生和患者的动作,以确保简单功能和
受伤的肌肉的美容恢复。拟议的项目是多学科的,并弥合当前差距
在机器人手术,组织工程和生物打印场之间。贡献很大,很高
影响力和创新性,可以彻底改变当前的临床范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farshid Alambeigi其他文献
Farshid Alambeigi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farshid Alambeigi', 18)}}的其他基金
A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
- 批准号:
10742476 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10218941 - 财政年份:2021
- 资助金额:
$ 135.41万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10541197 - 财政年份:2021
- 资助金额:
$ 135.41万 - 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
- 批准号:
10374927 - 财政年份:2021
- 资助金额:
$ 135.41万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
The role of distal aqueous humor outflow tissue in glucocorticoid-induced glaucoma
远端房水流出组织在糖皮质激素诱发青光眼中的作用
- 批准号:
10667863 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
Low-Cost, Single-Use Trans-Nasal Cryotherapy Device for Low-Resource Settings
适用于资源匮乏环境的低成本、一次性经鼻冷冻治疗设备
- 批准号:
10761295 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 135.41万 - 项目类别: