A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws

使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统

基本信息

  • 批准号:
    10374927
  • 负责人:
  • 金额:
    $ 18.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Summary/Abstract: Our long-range goal is to develop a novel semi-autonomous, minimally-invasive, image-guided neurosurgical robotic workstation that consists of a robotic positioning mechanism, a continuum manipulator, flexible instruments, and flexible implants (i.e., flexible pedicle screws (FPSs)) to enable the next generation of minimally- and less-invasive spinal interventions. By providing access to regions within vertebral body, which currently are not accessible utilizing conventional rigid surgical instruments, this neurosurgical robotic workstation will enable surgical treatment of various bone defects in spine such as compression on the spinal cord and/or nerve roots, metastatic bone disease, and vertebral compression fractures due to severe osteoporosis. For this project, we mainly will focus on the mechanical design, development, basic control, and assessment of the subsystems of this novel robotic system with the goal of minimally invasive spinal fusion of osteoporotic vertebrae. Approximately 54 million Americans age 50 and older have osteoporosis causing an estimated two million broken bones per year in the US only. Vertebral fractures are the most common type of osteoporotic fractures (about 47%), which can lead to back pain, loss of height, and further vertebral and non-vertebral fractures. Failure of non-surgical treatments often leads to a spinal fusion surgery to restore stability of the spine using Rigid Pedicle Screws (RPSs). However, anatomical constraints and rigidity of instruments and screws force the surgeon to typically implant the screw inside the low bone mineral density (BMD) regions of the vertebrae in an osteoporotic spine. This results in an increased risk of screws loosening, pullout, and subsequently a surgical failure. It is our central hypothesis that utilizing the proposed minimally-invasive robotic system, the success rate of spinal fusions with RPSs can be significantly improved. This improvement will happen by (i) developing a biomechanical analysis module to plan a curved drilling trajectory based on the spatial (3D) BMD in the vertebra obtained by QCT scans; (ii) increasing the reachability of the surgeons and enabling them to drill in high-BMD regions of vertebra using a steerable drilling robot and the curved-drilling technique; (iii) selectively implanting/anchoring the FPSs within the pre-planned drilled curved trajectories inside the high-BMD regions, which can improve the pullout strength and stability of fusion; (iv) Biomechanical analysis of the fusion with FPS and/or bone cemnet to optimize the spine stability, prevent vertebral collapse, and a need for revision surgery. The proposed contribution is significant, high impact, and innovative since it offers to eliminate the aforementioned complications of current spinal fusion surgery by proposing novel and innovative techniques. To our knowledge, robotically-assisted techniques utilizing a steerable drilling robot and FPSs have not been developed for a minimally invasive spinal fusion of osteoporotic vertebrae. Our goal is to demonstrate that the proposed system can significantly improve the current treatment of osteoporotic vertebrae and shift the current clinical paradigm.
总结/摘要: 我们的长期目标是开发一种新型的半自主,微创,图像引导的神经外科手术 机器人工作站,由机器人定位机构、连续操作器、柔性 器械,和柔性植入物(即,柔性椎弓根螺钉(FPS)),以实现下一代最小- 和微创脊柱介入治疗通过提供进入椎体内区域的通道,目前, 无法使用传统的刚性手术器械,这种神经外科机器人工作站将使 脊柱中各种骨缺损如脊髓和/或神经根上的压迫的外科治疗, 转移性骨疾病和由于严重骨质疏松导致的椎骨压缩性骨折。对于这个项目,我们 主要集中在机械设计,开发,基本控制,和评估的子系统, 这种新型机器人系统的目标是微创脊柱融合的脊椎骨。 大约5400万50岁及以上的美国人患有骨质疏松症, 每年骨折的人数仅在美国。脊椎骨折是脊椎骨骨折中最常见的类型 (约47%),这可能导致背痛,身高下降,以及进一步的脊椎和非脊椎骨折。失败 的非手术治疗往往导致脊柱融合手术,以恢复稳定的脊柱使用刚性 椎弓根螺钉(RPS)。然而,解剖学约束和器械和螺钉的刚性迫使 外科医生通常将螺钉植入椎骨的低骨矿物质密度(BMD)区域内, 脊柱畸形。这导致螺钉松动、拔出和随后手术的风险增加 失败 我们的中心假设是,利用所提出的微创机器人系统, 使用RPS的脊柱融合可以得到显著改善。这一改进将通过以下方式实现:(i)制定一项 生物力学分析模块,用于基于椎骨中的空间(3D)BMD来规划弯曲的钻孔轨迹 通过QCT扫描获得;(ii)增加外科医生的可达性,使他们能够在高BMD中钻孔 使用可操纵的钻孔机器人和弯曲钻孔技术的椎骨区域;(iii)选择性地 - 将FPS植入/锚定在高BMD区域内的预先计划的钻孔弯曲轨迹内, (4)FPS植骨融合的生物力学分析 和/或骨水泥,以优化脊柱稳定性,防止椎骨塌陷,并需要翻修手术。 拟议的贡献是重要的,高影响力和创新,因为它提出消除 通过提出新的和创新的技术来解决当前脊柱融合手术的上述并发症。到 根据我们的知识,利用导向钻井机器人和FPS的机器人辅助技术还没有被 用于微创脊柱融合术治疗脊椎骨骨折。我们的目标是证明 所提出的系统可以显著地改善目前对脊椎骨退行性变的治疗, 临床范例

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Farshid Alambeigi其他文献

Farshid Alambeigi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Farshid Alambeigi', 18)}}的其他基金

A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
  • 批准号:
    10742476
  • 财政年份:
    2023
  • 资助金额:
    $ 18.84万
  • 项目类别:
A Novel Semi-autonomous Surgeon-in-the-loop in situ Robotic Bioprinting System for Functional and Cosmetic Restoration of Volumetric Muscle Loss Injuries
一种新型半自主外科医生在环原位机器人生物打印系统,用于体积肌肉丢失损伤的功能和美容恢复
  • 批准号:
    10473273
  • 财政年份:
    2022
  • 资助金额:
    $ 18.84万
  • 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
  • 批准号:
    10218941
  • 财政年份:
    2021
  • 资助金额:
    $ 18.84万
  • 项目类别:
A Neurosurgical Robotic System for Minimally Invasive Spinal Fusion of Osteoporotic Vertebrae Using Flexible Pedicle Screws
使用柔性椎弓根螺钉进行骨质疏松椎体微创脊柱融合的神经外科机器人系统
  • 批准号:
    10541197
  • 财政年份:
    2021
  • 资助金额:
    $ 18.84万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 18.84万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 18.84万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.84万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了