Cross-regulation between loop extrusion, chromatin fiber structure and chromatin-associated RNAs

环挤出、染色质纤维结构和染色质相关 RNA 之间的交叉调节

基本信息

  • 批准号:
    10472889
  • 负责人:
  • 金额:
    $ 148.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The cohesin complex is a major factor driving the 3-D organization of mammalian genomes at the scale of tens to kilobases to megabases. Recent single-molecule experiments have shown that it can extrude loops of DNA, which are an organizing principle of genome architecture. Together with CTCF, a DNA-binding protein that stalls cohesin’s translocation and defines loop boundaries, and several regulators of cohesin that promote loading, such as NIPBL, or release from chromatin, such as WAPL, cohesin defines interaction domains in chromosomes that affect patterns of gene expression during development and can lead to developmental diseases or cancer when disrupted. Although loop extrusion on naked DNA has been studied, cohesin in cells must navigate nucleosome-packed chromatin fibers that restrict access to binding sites on DNA, self-organize into compartments of similar epigenetic state that are independent of and compete with loop domains, potentially regulate DNA supercoiling, and are decorated with chromatin-associated RNAs. How cohesin and CTCF interact with chromatin in cells is the next frontier in understanding 3-D genome organization. Progress in this arena will require a multi-scale approach, with methods that probe both nucleosome-scale and megabase-scale features. I propose experiments to probe (1) how loop extrusion by cohesin perturbs the local structure of the chromatin fiber; (2) how the local structure of the chromatin fiber, modulated by depletion of linker histones and destabilization of nucleosomes, regulates cohesin’s ability to load and extrude loops; (3) how changes in the balance of supercoiling due to excess cohesin looping affect local nucleosome-nucleosome interactions; and (4) the chromatin-associated RNA interactome of CTCF at RNA-dependent and RNA-independent loop boundaries. To dissect the specific effects of cohesin, its regulators and the chromatin fiber, we will use a combination of stable protein depletion, acute degradation, and pharmacological inhibition in human and mouse cell lines. We will read out changes in chromatin fiber structure and chromatin-associated RNAs using RICC-seq, a method I recently developed for measuring DNA-DNA contacts at sub-nucleosome resolution in intact cells, and using novel technology development to probe the chromatin-associated RNA interactome of specific proteins. These methods will be combined with more established epigenome and transcription profiling tools and with coarse- grained simulations to develop and test multi-scale models for the interaction of loop extrusion machinery with the chromatin fiber. I anticipate that the results of these experiments will shed new light on how loop extrusion and chromatin’s self-association interact in specific contexts, which models for cohesin’s engagement with DNA are relevant to loop extrusion, how supercoiling is disseminated across chromosomes, and how the local molecular context defines loop boundaries. This knowledge may reveal new strategies for compensating transcriptional dysregulation due to mutations in cohesin or its regulators using targetable factors that regulate the chromatin fiber, cohesin’s native substrate.
粘附素复合体是驱动哺乳动物基因组三维组织的一个主要因素,其规模为TENS 从千基数到兆基数。最近的单分子实验表明,它可以挤出DNA环, 这是基因组结构的组织原则。与CTCF一起,一种DNA结合蛋白 粘附素的易位和定义环边界,以及促进负荷的粘附素的几个调节因子, 如NIPBL,或从染色质释放,如WAPL,粘附素定义了染色体中的相互作用区域 在发育过程中影响基因表达模式,并可能导致发育性疾病或癌症 当被打乱时。尽管裸露DNA上的环挤压已经被研究过,但细胞中的粘附素必须导航 核小体包裹的染色质纤维限制对DNA结合部位的访问,自组织成 类似表观遗传状态的隔间,它们独立于环域并与环域竞争,潜在地 调节DNA超级卷曲,并装饰着染色质相关的RNA。粘附素和CTCF如何相互作用 在细胞中发现染色质是理解三维基因组组织的下一个前沿。这一领域的进步将 需要多尺度的方法,方法既要探测核小体尺度的特征,又要探测兆基尺度的特征。 我提议用实验来探索(1)粘附素的环状挤出如何扰乱染色质的局部结构 纤维;(2)染色质纤维的局部结构是如何受连接器组蛋白和 核小体的不稳定,调节粘附素加载和挤出环的能力;(3)如何改变 过度粘连素环导致的超螺旋平衡影响局部核小体-核小体相互作用;以及(4) CTCF染色质相关的RNA相互作用组在RNA依赖和RNA非依赖的环边界。 为了分析粘附素、它的调节器和染色质纤维的具体影响,我们将使用以下组合 人类和小鼠细胞系中稳定的蛋白质耗竭、急性降解和药理抑制。我们 将使用RICC-SEQ读取染色质纤维结构和染色质相关RNA的变化,这是一种方法I 最近开发的用于在完整细胞中以亚核小体分辨率测量DNA-DNA接触的方法,并使用 探索特定蛋白质染色质相关RNA相互作用组的新技术进展。这些 方法将与更成熟的表观基因组和转录图谱工具相结合,并与粗略- 开发和测试环流挤出机与多尺度模型相互作用的粒度模拟 染色质纤维。我预计,这些实验的结果将为环状挤出如何 染色质的自关联在特定的环境中相互作用,这为凝集素与DNA的结合提供了模型 与环挤出有关,超螺旋是如何在染色体上传播的,以及局部 分子背景定义了环的边界。这一知识可能会揭示补偿的新策略 使用靶向调节因子引起的粘附素或其调节器突变所致的转录失调 染色质纤维,粘附素的天然底物。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Viviana I Risca其他文献

Viviana I Risca的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Viviana I Risca', 18)}}的其他基金

Genetics and Cell Biology Training Program
遗传学和细胞生物学培训计划
  • 批准号:
    10636803
  • 财政年份:
    2022
  • 资助金额:
    $ 148.5万
  • 项目类别:
Genetics and Cell Biology Training Program
遗传学和细胞生物学培训计划
  • 批准号:
    10333524
  • 财政年份:
    2022
  • 资助金额:
    $ 148.5万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 148.5万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 148.5万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 148.5万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 148.5万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 148.5万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 148.5万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 148.5万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 148.5万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 148.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 148.5万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了