Mimicking, Exploiting, and Understanding Biology's Heterogeneity in 4D
在 4D 中模仿、利用和理解生物学的异质性
基本信息
- 批准号:10471278
- 负责人:
- 金额:$ 37.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimal ModelAreaBiochemicalBiocompatible MaterialsBiological MarkersBiological ProcessBiologyBlood VesselsBlood capillariesCardiovascular systemCell Culture TechniquesCell physiologyCellsCuesDevelopmentDiseaseDisease ProgressionDrug resistanceEndotheliumEventExhibitsFoundationsHematological DiseaseHeterogeneityHomeostasisHumanHydrogelsIn VitroKnowledgeLifeLogicMalignant NeoplasmsMethodologyMethodsMorphogenesisOpticsOrganPhotochemistryPhysiologicalPreventionProcessProteinsProteomicsReportingResearchResolutionSickle Cell AnemiaSignal TransductionSignaling ProteinSpecificityTherapeuticThrombosisTimeTissue BanksTissue ModelTissuesUniversitiesVisualizationWashingtonbasebiophysical propertiesdisease diagnosisdrug actionin vivomigrationmultidisciplinarynanoparticlenew therapeutic targetprogramsresponsesmall moleculespatiotemporaltooltumor
项目摘要
PROJECT SUMMARY
Our bodies consist of an exquisite collection of tissues and organs that undergo constant change. From
morphogenesis and homeostasis to the progression of disease, these changes are associated with both the
healthy and unhealthy processes that define human life. My research program at the University of Washington
is developing robust and uniquely powerful multidisciplinary methodologies to mimic, exploit, and quantify
these changes, particularly as they evolve in both time and 3D space (i.e., 4D). In our lab’s first five years of
existence, we have: (1) developed a suite of synthetic cell-culture platforms whose biochemical and
biophysical properties can be reversibly modulated in 4D using cytocompatible photochemistries, and have
utilized these platforms to regulate proliferation, migration, differentiation, and intracellular signaling at single-
and sub-cellular resolutions; (2) introduced a photodegradable material-based approach to generate the first
endothelialized 3D vascular networks within cell-laden hydrogel biomaterials that span nearly all size scales of
native human vasculature (including capillaries); (3) reported the first modular framework for imparting
biomaterials with precise degradative responsiveness to multiple environmental cues/biomarkers following
user-programmable Boolean logic; and (4) established the first tools for “spatiotemporally resolved
proteomics”, enabling visualization and quantification of proteins produced in vitro and in vivo within user-
defined regions in 4D. The present proposal expands our group’s capabilities in each of these areas, paving
the way to new therapeutic targets and treatments of disease through a fundamentally transformed knowledge
of basic cell physiology. In this project, we will: (1) exploit our 4D-tunable biomaterials to recapitulate and probe
cardiovascular developmental signaling in vitro, examining the manner in which precise spatial and temporal
presentation of signaling proteins culminates in orchestrated differentiation; (2) employ synthetic capillaries to
examine drug action and resistance, screen therapeutics, and investigate microvascular occlusion, thrombosis,
and altered remodeling that occurs in many hematologic diseases (e.g., sickle cell anemia, spherocytosis); (3)
develop and deploy hydrogel nanoparticles exhibiting logic-based degradative response to cancer-presented
biomarkers to deliver small molecule chemotherapeutics to tumors with unprecedented specificity; and (4)
extend our 4D proteomic strategies to permit optically and physiologically defined proteomic mapping in living
tissue and model organisms. Critically, the methods that we are developing and implementing are cell-, tissue-,
and disease-agnostic, enabling enhanced understanding of a wide variety of biological processes while laying
the foundation for advances in disease diagnosis, treatment, and prevention.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cole A DeForest其他文献
臨床からみた門脈圧亢進症の病態分析
门静脉高压症临床病理分析
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Koichiro Uto;Takao Aoyagi;Cole A DeForest;Allan S Hoffman;Mitsuhiro Ebara;丸山紀史 - 通讯作者:
丸山紀史
Cole A DeForest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cole A DeForest', 18)}}的其他基金
Mimicking, Exploiting, and Understanding Biology's Heterogeneity in 4D
在 4D 中模仿、利用和理解生物学的异质性
- 批准号:
10261393 - 财政年份:2020
- 资助金额:
$ 37.16万 - 项目类别:
Mimicking, Exploiting, and Understanding Biology's Heterogeneity in 4D
在 4D 中模仿、利用和理解生物学的异质性
- 批准号:
10028017 - 财政年份:2020
- 资助金额:
$ 37.16万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists