Mimicking, Exploiting, and Understanding Biology's Heterogeneity in 4D
在 4D 中模仿、利用和理解生物学的异质性
基本信息
- 批准号:10028017
- 负责人:
- 金额:$ 37.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimal ModelAreaBiochemicalBiocompatible MaterialsBiological MarkersBiological ProcessBiologyBlood VesselsBlood capillariesCardiovascular systemCell Culture TechniquesCell physiologyCellsCuesDevelopmentDiseaseDisease ProgressionDrug resistanceEndotheliumEventExhibitsFoundationsHematological DiseaseHeterogeneityHomeostasisHumanHydrogelsIn VitroKnowledgeLifeLogicMalignant NeoplasmsMethodologyMethodsMorphogenesisOpticsOrganPhotochemistryPhysiologicalPreventionProcessProteinsProteomicsReportingResearchResolutionSickle Cell AnemiaSignal TransductionSignaling ProteinSpecificityTherapeuticThrombosisTimeTissue BanksTissue ModelTissuesUniversitiesVisualizationWashingtonbasebiophysical propertiesdisease diagnosisdrug actionin vivomigrationmultidisciplinarynanoparticlenew therapeutic targetprogramsresponsesmall moleculespatiotemporaltooltumor
项目摘要
PROJECT SUMMARY
Our bodies consist of an exquisite collection of tissues and organs that undergo constant change. From
morphogenesis and homeostasis to the progression of disease, these changes are associated with both the
healthy and unhealthy processes that define human life. My research program at the University of Washington
is developing robust and uniquely powerful multidisciplinary methodologies to mimic, exploit, and quantify
these changes, particularly as they evolve in both time and 3D space (i.e., 4D). In our lab’s first five years of
existence, we have: (1) developed a suite of synthetic cell-culture platforms whose biochemical and
biophysical properties can be reversibly modulated in 4D using cytocompatible photochemistries, and have
utilized these platforms to regulate proliferation, migration, differentiation, and intracellular signaling at single-
and sub-cellular resolutions; (2) introduced a photodegradable material-based approach to generate the first
endothelialized 3D vascular networks within cell-laden hydrogel biomaterials that span nearly all size scales of
native human vasculature (including capillaries); (3) reported the first modular framework for imparting
biomaterials with precise degradative responsiveness to multiple environmental cues/biomarkers following
user-programmable Boolean logic; and (4) established the first tools for “spatiotemporally resolved
proteomics”, enabling visualization and quantification of proteins produced in vitro and in vivo within user-
defined regions in 4D. The present proposal expands our group’s capabilities in each of these areas, paving
the way to new therapeutic targets and treatments of disease through a fundamentally transformed knowledge
of basic cell physiology. In this project, we will: (1) exploit our 4D-tunable biomaterials to recapitulate and probe
cardiovascular developmental signaling in vitro, examining the manner in which precise spatial and temporal
presentation of signaling proteins culminates in orchestrated differentiation; (2) employ synthetic capillaries to
examine drug action and resistance, screen therapeutics, and investigate microvascular occlusion, thrombosis,
and altered remodeling that occurs in many hematologic diseases (e.g., sickle cell anemia, spherocytosis); (3)
develop and deploy hydrogel nanoparticles exhibiting logic-based degradative response to cancer-presented
biomarkers to deliver small molecule chemotherapeutics to tumors with unprecedented specificity; and (4)
extend our 4D proteomic strategies to permit optically and physiologically defined proteomic mapping in living
tissue and model organisms. Critically, the methods that we are developing and implementing are cell-, tissue-,
and disease-agnostic, enabling enhanced understanding of a wide variety of biological processes while laying
the foundation for advances in disease diagnosis, treatment, and prevention.
项目摘要
我们的身体由一系列精致的组织和器官组成,这些组织和器官不断发生变化。从
形态发生和稳态的疾病进展,这些变化都与这两个
健康和不健康的过程来定义人类的生活。我在华盛顿大学的研究项目
正在开发强大而独特的多学科方法来模拟,利用和量化
这些变化,特别是当它们在时间和3D空间两者中演变时(即,4D)。在我们实验室的前五年里,
存在,我们已经:(1)开发了一套合成细胞培养平台,其生化和
生物物理性质可以使用细胞相容性光化学在4D中可逆地调节,并且具有
利用这些平台来调节增殖、迁移、分化和细胞内信号传导,
和亚细胞分辨率;(2)引入了一种基于光降解材料的方法来生成第一个
在载有细胞的水凝胶生物材料内的内皮化3D血管网络,其跨越几乎所有的尺寸尺度,
天然人体血管系统(包括毛细血管);(3)报道了第一个模块化框架,用于赋予
生物材料对多种环境线索/生物标志物具有精确的降解反应性,
用户可编程布尔逻辑;(4)建立了第一个“时空分辨”工具
蛋白质组学”,使可视化和定量的蛋白质产生的体外和体内的用户-
在4D中定义区域。目前的建议扩大了我们集团在这些领域的能力,
通过从根本上改变知识,
基本的细胞生理学。在这个项目中,我们将:(1)利用我们的4D可调生物材料来重现和探测
心血管发育信号在体外,检查的方式,精确的空间和时间
信号蛋白的呈递在协调分化中达到高潮;(2)采用合成毛细血管,
检查药物作用和耐药性,筛选治疗方法,并研究微血管闭塞,血栓形成,
以及在许多血液病中发生的改变的重塑(例如,镰状细胞性贫血,球形红细胞增多症);(3)
开发和部署水凝胶纳米颗粒,其对癌症呈现的
生物标志物,以前所未有的特异性将小分子化学治疗剂递送至肿瘤;以及(4)
扩展我们的4D蛋白质组学策略,以允许在生活中光学和生理学定义的蛋白质组学图谱
组织和模式生物。重要的是,我们正在开发和实施的方法是细胞,组织,
和疾病不可知论,使人们能够在奠定基础的同时加强对各种生物过程的理解,
疾病诊断、治疗和预防的基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cole A DeForest其他文献
臨床からみた門脈圧亢進症の病態分析
门静脉高压症临床病理分析
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Koichiro Uto;Takao Aoyagi;Cole A DeForest;Allan S Hoffman;Mitsuhiro Ebara;丸山紀史 - 通讯作者:
丸山紀史
Cole A DeForest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cole A DeForest', 18)}}的其他基金
Mimicking, Exploiting, and Understanding Biology's Heterogeneity in 4D
在 4D 中模仿、利用和理解生物学的异质性
- 批准号:
10471278 - 财政年份:2020
- 资助金额:
$ 37.16万 - 项目类别:
Mimicking, Exploiting, and Understanding Biology's Heterogeneity in 4D
在 4D 中模仿、利用和理解生物学的异质性
- 批准号:
10261393 - 财政年份:2020
- 资助金额:
$ 37.16万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 37.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists