A Rapid Carotid Atherosclerotic Disease Assessment System with 3D MRI
具有 3D MRI 的颈动脉粥样硬化疾病快速评估系统
基本信息
- 批准号:10383271
- 负责人:
- 金额:$ 24.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptionAgreementAnatomyAngiographyAreaArterial Fatty StreakBilateralCarotid ArteriesCarotid Atherosclerotic DiseaseCause of DeathClassificationClinicalComplexComputer softwareCost efficiencyData AnalysesDeductiblesDetectionDevelopmentDiagnosisDiagnosticEnsureEquilibriumEtiologyEvaluationEventGoalsGuidelinesHemorrhageImageImaging TechniquesImaging technologyIschemic StrokeLesionMagnetic Resonance ImagingMeasurementMotionNamesOutputPatient imagingPatientsPerformancePhasePlayProtocols documentationPublishingQuality of lifeReaderReportingResearch Project GrantsRiskRoleRuptureScanningSiteStenosisStrokeStroke preventionSurfaceSystemSystems AnalysisTechniquesTechnologyTestingThickTimeTimeLineTrainingUnited StatesValidationX-Ray Computed Tomographyaccurate diagnosisautomated analysisbaseclinical applicationclinical imagingcontrast imagingcostcost estimatecryptogenic strokedeep learningdesigndisabilityeffective therapyexperienceimprovedinnovationnovelpatient subsetsproduct developmentprototyperadiologistresearch studysoftware developmentstroke risktoolultrasound
项目摘要
Abstract
Stroke is a major cause of death and long-term disability worldwide. In the United States alone, there are
roughly 0.8 million ischemic strokes each year, with an estimated cost of $34 billion. Among the various
etiologies of stroke, carotid atherosclerotic disease (CAD) is a very common one. Accurate diagnosis of CAD
will be important for effective treatment and prevention of stroke. Although carotid vessel wall (CVW)
magnetic resonance imaging (MRI) has shown superior advantages in CAD assessment over other imaging
techniques (e.g. ultrasound, CTA, etc.), its widespread in clinical use is slow due to several limitations,
including lengthy and complex imaging procedure, highly demanding on technologists’ training and
experiences and laborious lesion analysis, etc. Therefore, there is a clear need for a fast and automated
image acquisition and analysis solution to improve the adoption in clinical settings.
In this Phase I project, we plan to develop a rapid clinical CAD assessment solution, which includes a large
coverage single contrast MR imaging procedure and a fully automated analysis software, named CASCADIA,
with innovative image quality evaluation (IQE) and deep learning lesion analysis technologies. We also
designed a new domain adaptation framework to ensure CASCADIA’s performance on images acquired from
various imaging sites. This system is expected to complete clinical CAD assessment of a patient with
unprecedented short time of 5 minutes which is 1/10 of the time in current clinical use. This solution will not
only be an efficient assistant diagnosis tool for clinicians but also benefit patients with shorter imaging time and
potential cost deduction.
The output of Phase I product will include image quality evaluation, clinical measurements and
atherosclerotic lesion classification. Development of more advanced analysis, such as lesion characterization
and risk score, are planned in Phase II.
We currently have access to more than 1000 3DMERGE scans acquired from previous research projects (a
large portion of them with radiologists’ annotations), with which, in Phase I, we propose to:
Aim 1: Develop the prototype software of CASCADIA, which includes:
1) Develop a streamlined CAD assessment workflow by combining IQE and lesion classification modules
2) Integrate clinical measurement functions, including stenosis, plaque burden and wall thickness
Aim 2: Evaluate performance of the prototype software, which includes:
1) Evaluate the performance of IQE and lesion classification modules in CASCADIA
2) Install the proposed solution in a clinical imaging site and test with phantom
This Phase I proposal is planned for six months with clearly defined timeline and milestones. The
developed prototype will be deployed in clinical settings as a pre-market base for our long-term goal of full-
scale commercial product development in a Phase II application.
摘要
中风是世界范围内导致死亡和长期残疾的主要原因。仅在美国,就有
每年大约有80万例缺血性中风,估计成本为340亿美元。在众多的
卒中的病因中,颈动脉粥样硬化性疾病(CAD)是一种非常常见的疾病。CAD的准确诊断
对有效治疗和预防中风具有重要意义。尽管颈动脉管壁(CVW)
磁共振成像(MRI)在冠心病评估中显示出比其他成像更优越的优势
技术(例如超声、CTA等),其在临床上的广泛应用由于几个限制而缓慢,
包括冗长复杂的成像程序,对技术人员的培训要求很高,以及
经验和繁琐的病变分析等。因此,显然需要一种快速和自动化的
图像采集和分析解决方案,以提高临床环境中的采用率。
在这个第一阶段的项目中,我们计划开发一个快速的临床CAD评估解决方案,其中包括一个大型
覆盖单对比磁共振成像程序和名为Cascadia的全自动分析软件,
具有创新的图像质量评估(IQE)和深度学习病变分析技术。我们也
设计了一种新的领域适配框架,以确保Cascadia在从
不同的成像地点。该系统有望完成临床CAD评估的患者
前所未有的短时间为5分钟,是目前临床使用时间的1/10。此解决方案不会
不仅是临床医生的一种有效的辅助诊断工具,而且使患者受益于更短的成像时间和
潜在的成本扣除。
第一阶段产品的输出将包括图像质量评估、临床测量和
动脉粥样硬化病变分类。开发更高级的分析,如病变特征
和风险评分,计划在第二阶段进行。
我们目前可以访问从以前的研究项目(A)获得的1000多个3DMERGE扫描
其中很大一部分带有放射科医生的注释),在第一阶段,我们建议:
目标1:开发卡斯卡迪亚原型软件,包括:
1)结合IQE和病变分类模块,开发简化的CAD评估工作流程
2)集成临床测量功能,包括狭窄程度、斑块负荷和壁厚
目标2:评估原型软件的性能,包括:
1)评估Cascadia中IQE和病变分类模块的性能
2)将建议的解决方案安装在临床成像站点并使用体模进行测试
这项第一阶段提案计划为期六个月,并有明确的时间表和里程碑。这个
开发的原型将部署在临床环境中,作为我们全面
在第二阶段应用程序中扩展商业产品开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dongxiang Xu其他文献
Dongxiang Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.98万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 24.98万 - 项目类别:
Standard Grant














{{item.name}}会员




