Connecting in vitro glutamine synthetase biophysics with the cellular environment
将体外谷氨酰胺合成酶生物物理学与细胞环境联系起来
基本信息
- 批准号:10382128
- 负责人:
- 金额:$ 6.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressArchitectureBindingBiochemicalBiochemistryBiological AssayBiophysicsCatalysisCell ProliferationCellsCellular biologyChimeric ProteinsCryoelectron MicroscopyDataDiseaseEnvironmentEnzyme KineticsEnzymesEquilibriumFellowshipFluorescenceGenomicsGlutamate-Ammonia LigaseGoalsGrowthHandHot SpotIn VitroInheritedKineticsLearningLibrariesLifeLinkMalignant NeoplasmsMassive Parallel SequencingMeasurementMeasuresMediatingMetabolicMetabolic DiseasesMetabolic PathwayModelingMolecular ConformationMultienzyme ComplexesMutagenesisMutationNatureNutritionalOutcomePhotometryPlayProceduresReactionRegulationReportingResearchResearch PersonnelResolutionRoleSomatic MutationStructureTechniquesTechnologyTherapeuticThermodynamicsTissuesTrainingUniversitiesVariantbasecancer therapycareerchemical reactionexperimental studyfitnessin vitro Assayin vitro activityin vivoinhibitorinnovationinsightinterestmonomermutantmutation screeningnext generationnovelsingle moleculethree dimensional structuretumor
项目摘要
Project Summary/Abstract – Connecting in vitro glutamine synthetase biophysics with the cellular
environment
Enzyme catalysis of vital chemical reactions sustains life. Dysregulation of these essential metabolic reactions
contributes to rapid proliferation in the cancer state, devastating inherited metabolic disorders, and is involved
in numerous other diseases. Contradictions between in vitro and in vivo measurements of enzyme catalysis
hamper our understanding of Nature’s rules governing enzyme regulation. I propose to address these
contradictions with an integrated approach using glutamine synthetase (GS), an essential metabolic enzyme,
as a model. I hypothesize that integrating multiple metrics of GS function in vivo will yield more accurate
functional models of GS and that modes of GS regulation will be uncovered through reconciling any differences
made between orthogonal in vivo and in vitro measures of activity and composition.
In my first aim, I will use cellular readouts of GS fitness and abundance multiplexed with deep mutational
scanning (DMS) to elucidate the sequence determinants of GS specific activity in vivo. Next, in aim 2, I will
define the thermodynamic landscape underlying GS activity as a function of oligomeric state using in vitro
assays that can be compared to in vivo measurements in aim 1. Finally, I will reveal the fine conformational
details that trigger GS mediated catalysis and allosteric control elicited by different oligomeric states and
effectors using cryo-EM and novel kinetic assays in my third aim. Furthermore, with cryo-EM, enzyme kinetics,
and oligomeric state analysis procedures in hand, those variants of interest identified from aim 1 will be fully
characterized to uncover mechanisms of regulation and generate a holistic model of GS function.
My in vivo specific activity metric is predicted to yield more precise information on the effect of GS variants
allow for inference of allosteric networks underlying GS activity. This in vivo specific activity metric will be
supported and validated by in vitro measurements. Any differences between in vitro and in vivo measurements
provide the opportunity to be reconciled through additional experimentation, such as expanding in vivo assays
to include unique cellular conditions. Establishing GS in vivo and in vitro connections through this approach will
allow prediction of cancer somatic mutation effect on GS function. As GS occupies key nodes in vital metabolic
pathways required for cell proliferation, specific inhibitors would support existing cancer therapies in GS
addicted/associated cancers. Given that a tumor metabolic state is less heterogeneous than its genomic
landscape, precise targeting of rouge metabolic enzyme states remains an attractive therapeutic option.
Moreover, GS is a representative multimeric metabolic enzyme whose biophysical principles governing
function and regulation can be compared and extended to other critical metabolic enzymes. The training I’ll
receive to establish the experimental pipeline from the proposed research herein will serve me well to further
expand on these regulatory principles in my career as an independent researcher at a research-intensive
university.
项目概要/摘要-将体外谷氨酰胺合成酶生物物理学与细胞生物物理学相结合
环境
酶催化重要的化学反应维持生命。这些基本代谢反应的失调
有助于癌症状态的快速扩散,破坏遗传性代谢紊乱,并参与
在许多其他疾病。酶催化作用的体外和体内测量之间的矛盾
阻碍了我们对自然界酶调节规律的理解。我建议解决这些问题,
与使用谷氨酰胺合成酶(GS),一种必需的代谢酶,
做模特我假设,整合体内GS功能的多个指标将产生更准确的结果。
全球服务的功能模式,以及全球服务监管模式将通过协调任何差异来揭示,
在活性和组成的体内和体外正交测量之间进行。
在我的第一个目标中,我将使用GS适应性和丰度的细胞读数与深度突变多重化,
扫描(DMS)以阐明GS体内比活性的序列决定因素。接下来,在目标2中,我将
使用体外实验将GS活性的热力学背景定义为寡聚状态的函数,
可以与目标1中的体内测量进行比较的测定。最后,我将揭示精细构象
触发GS介导的催化和由不同寡聚状态引起的变构控制的细节,
在我的第三个目标中,使用cryo-EM和新的动力学测定的效应器。此外,利用冷冻电镜,酶动力学,
和寡聚状态分析程序在手,从目标1中鉴定的那些感兴趣的变体将被完全
其特征在于揭示调节机制并生成GS功能的整体模型。
我的体内比活性指标预计将产生更精确的信息GS变体的影响
允许推断GS活性背后的变构网络。该体内比活性度量将是
通过体外测量得到支持和验证。体外和体内测量之间的任何差异
提供了通过额外实验(如扩大体内试验)进行协调的机会
包括独特的细胞条件。通过这种方法在体内和体外建立GS连接,
允许预测癌症体细胞突变对GS功能的影响。由于GS占据了重要代谢的关键节点,
细胞增殖所需的通路,特异性抑制剂将支持GS中现有的癌症疗法。
成瘾/相关癌症。鉴于肿瘤代谢状态的异质性低于其基因组
因此,精确靶向胭脂代谢酶状态仍然是一种有吸引力的治疗选择。
此外,GS是一种代表性的多聚体代谢酶,其生物物理原理支配
功能和调节可以进行比较,并扩展到其他关键的代谢酶。训练我会
从这里提出的研究中获得建立实验管道将有助于我进一步
在我的职业生涯中,我作为一名独立研究员,在一个研究密集型的
大学
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Raymond Greene其他文献
Eric Raymond Greene的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Raymond Greene', 18)}}的其他基金
Connecting in vitro glutamine synthetase biophysics with the cellular environment
将体外谷氨酰胺合成酶生物物理学与细胞环境联系起来
- 批准号:
10570167 - 财政年份:2022
- 资助金额:
$ 6.72万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 6.72万 - 项目类别:
Research Grant