A Novel Genome-Wide Screen to Identify and Characterize Regulators of ALS Disease Modifier Gene Ataxin-2
一种新型全基因组筛选,用于识别和表征 ALS 疾病修饰基因 Ataxin-2 的调节因子
基本信息
- 批准号:10382981
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-03 至 2023-01-02
- 项目状态:已结题
- 来源:
- 关键词:ALS patientsAction PotentialsAlzheimer&aposs DiseaseAmyotrophic Lateral SclerosisAntisense OligonucleotidesAutophagocytosisBehaviorBiogenesisBiologicalBiological ModelsBlood - brain barrier anatomyBrainCRISPR screenCRISPR/Cas technologyCell modelCellsClinicalClinical TrialsDNA-Binding ProteinsDataDepositionDevelopmentDiseaseDoseDrosophila genusDrug TargetingEnhancersEnzymesFDA approvedFRAP1 geneFluorescence-Activated Cell SortingFutureGene TargetingGenesGeneticGoalsHealthHumanIn VitroIndividualInduced pluripotent stem cell derived neuronsInheritedKnock-outLY6E geneLeadLengthLightLongevityLysosomesMammalian CellMediatingMessenger RNAMethodsModelingMotor NeuronsMusMuscleNatureNeurodegenerative DisordersNeuronsParkinson DiseasePathogenesisPathologicPathologyPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPhysiologicalProtein OverexpressionProteinsRegulationRoleSCA2 proteinSafetySignal TransductionSpinalSpinal CordSystemTestingTherapeuticTherapeutic InterventionToxic effectWritingYeastsalpha synucleinamyotrophic lateral sclerosis therapybasecohortdeletion librarydisease phenotypedisorder riskdruggable targetflygenetic approachgenetic risk factorgenome wide screengenome-widein vivoinsightknock-downlifetime riskmotor deficitmotor impairmentmouse modelmulticatalytic endopeptidase complexneuron lossnew therapeutic targetnoveloverexpressionpolyglutamineprotein aggregationprotein complexprotein degradationrisk variantscreeningsmall moleculesmall molecule inhibitorsporadic amyotrophic lateral sclerosistau Proteinstherapeutic targetvacuolar H+-ATPase
项目摘要
Project Summary / Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with an estimated lifetime risk of 1 in
400 individuals. ALS is clinically characterized by motor deficits, and pathologically by the selective loss of motor
neurons in the brain and spinal cord, as well as deposition of ubiquitinated proteinaceous aggregates of TDP-
43. Despite the presence of TDP-43 pathology in nearly all (~97%) brains of ALS patients, the genetic
underpinnings of the disease is highly heterogeneous, with ~90% being considered to be ‘sporadic,’ or having
no known genetic cause. The variable nature of the underlying causes has made treatment of the disease
historically difficult due to a lack of clear therapeutic targets. In the past decade, Ataxin-2 (ATXN2) has emerged
as a promising therapeutic target for ALS, as a potent genetic modifier of TDP-43 aggregation and toxicity across
multiple models of TDP-43 proteinopathy. Most excitingly, decreasing ATXN2 levels using anti-sense
oligonucleotides (ASOs) in a mouse model of TDP-43 overexpression led to a marked rescue of motor
impairments and dramatic extension of lifespan. Despite the promise of ASOs, having an orthogonal method to
reduce ATXN2 levels—such as a small molecule drug that can target one of its regulators—could have immense
practical benefit in the clinical context. Moreover, little remains known on how ATXN2 is normally regulated, as
well as its true role in disease. To gain mechanistic insight as well as to identify additional therapeutic targets, I
developed a novel FACS (fluorescence activated cell sorting)-based CRISPR/Cas9 genome-wide knockout
screening strategy. The idea was to identify suppressors and enhancers of ATXN2 protein levels in a reliable
and efficient way; genes that decrease ATXN2 levels upon knockout could serve as novel therapeutic targets for
ALS, while those that increase ATXN2 levels upon knockout could potentially contribute to heightened risk for
the disease. The screen yielded a multitude of promising hits, with many acting in same biological pathways, or
sometimes encoding subunits of one protein complex. One example of this is the lysosomal vacuolar ATPase
(v-ATPase), for which genes encoding nearly every subunit were found to be significant suppressors of ATXN2
protein levels in my screens. In addition to validating hits from the initial screens across multiple disease relevant
systems—such as in mouse primary neurons and human iPSC-derived neurons—I will expand the analysis to
delve deeper into the mechanism of how the v-ATPase is regulating ATXN2 protein levels. Moreover, given that
several FDA-approved small molecule drugs are available that inhibit v-ATPase subunits, I will test their safety
and efficacy in reducing ATXN2 levels and rescuing disease phenotypes in a mouse model of ALS in vivo. If this
approach is successful, there are a multitude of exciting possibilities for this screening platform and overall target
discovery approach that I believe could help to uncover regulators of many other neurodegenerative diseases
genes (e.g., tau and Ab in FTD and Alzheimer’s Disease, a-synuclein in Parkinson’s Disease) to empower the
discovery of novel therapeutic targets in contexts not limited to ALS.
项目总结/摘要
肌萎缩侧索硬化症(ALS)是一种致命的神经退行性疾病,估计终生风险为1/
400个人。ALS的临床特征是运动缺陷,病理特征是运动功能的选择性丧失。
脑和脊髓中的神经元,以及TDP的泛素化蛋白质聚集体的沉积,
43.尽管几乎所有(~97%)ALS患者的大脑中都存在TDP-43病理,但遗传学上的
该疾病的基础是高度异质性的,约90%被认为是“散发性的”,或具有
没有已知的遗传原因。潜在原因的可变性使得对这种疾病的治疗
由于缺乏明确的治疗靶点,在过去的十年中,Ataxin-2(ATXN 2)已经出现
作为ALS的有希望的治疗靶点,作为TDP-43聚集和毒性的有效遗传修饰剂,
TDP-43蛋白质病的多种模型。最令人兴奋的是,使用反义核酸降低ATXN 2水平,
在TDP-43过表达的小鼠模型中,寡核苷酸(ASO)导致运动神经元的显著拯救。
损伤和寿命的显著延长。尽管ASO有希望,但使用正交方法来
降低ATXN 2水平--例如一种可以靶向其调节因子之一的小分子药物--可能会产生巨大的
在临床上的实际效益。此外,人们对ATXN 2通常如何调节知之甚少,
以及它在疾病中的真正作用。为了获得机制的见解以及确定其他治疗靶点,我
开发了一种新的基于FACS(荧光激活细胞分选)的CRISPR/Cas9全基因组敲除
筛选策略这个想法是为了确定ATXN 2蛋白水平的抑制剂和增强剂,
敲除后降低ATXN 2水平的基因可以作为新的治疗靶点,
ALS,而那些在敲除后增加ATXN 2水平的人可能会导致ALS的风险增加
这种疾病筛选产生了大量有希望的命中,其中许多在相同的生物学途径中起作用,或
有时编码一种蛋白质复合物的亚基。其中一个例子是溶酶体空泡ATP酶
(v-ATP酶),其中编码几乎每个亚基的基因被发现是ATXN 2的显著抑制因子
蛋白质水平的变化除了验证多个疾病相关的初始筛选结果外,
系统-如小鼠原代神经元和人类iPSC衍生的神经元-我将扩展分析,
深入研究v-ATPase如何调节ATXN 2蛋白水平的机制。此外,鉴于
有几种FDA批准的小分子药物可以抑制v-ATP酶亚基,我将测试它们的安全性
以及在体内ALS小鼠模型中降低ATXN 2水平和挽救疾病表型的功效。如果这
虽然这种方法是成功的,但这种筛选平台和总体目标有许多令人兴奋的可能性。
我相信这种发现方法可以帮助发现许多其他神经退行性疾病的调节因子
基因(例如,FTD和阿尔茨海默病中的tau和Ab,帕金森病中的α-突触核蛋白),
在不限于ALS的情况下发现新的治疗靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARAM KIM其他文献
GARAM KIM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 4.68万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 4.68万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 4.68万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 4.68万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 4.68万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 4.68万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 4.68万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 4.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)