A computational approach for quantifying motor behaviors in spinocerebellar ataxias to improve early detection of motor signs and precisely estimate disease severity and disease change
一种量化脊髓小脑共济失调运动行为的计算方法,以改善运动体征的早期检测并精确估计疾病严重程度和疾病变化
基本信息
- 批准号:10381740
- 负责人:
- 金额:$ 53.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAge of OnsetAlgorithmsAssessment toolAtaxiaBehaviorBehavior assessmentBehavioralBiological MarkersCellular PhoneCharacteristicsClassificationClinicClinic VisitsClinicalClinical TrialsClinical assessmentsCollectionComputer Vision SystemsComputersComputing MethodologiesDataData CollectionData SetDetectionDevelopmentDiseaseDisease ProgressionDisease modelEarly DiagnosisEarly identificationEducationEye MovementsFaceGenerationsGenesGeographic LocationsGoalsGrainHomeHumanIndividualKnowledgeLabelLearning DisordersLengthMachine LearningMeasurementMeasuresMethodologyMethodsModalityModelingMotorMovementMusNeurodegenerative DisordersNeurologyNeurosciencesOnset of illnessOutcome MeasureParkinson DiseaseParkinsonian DisordersPatient Outcomes AssessmentsPatient RecruitmentsPatientsPatternPharmaceutical PreparationsSample SizeSeveritiesSeverity of illnessSignal TransductionSocioeconomic StatusSpeechSpinocerebellar AtaxiasSystemTechnologyTestingTimeTrainingTrinucleotide RepeatsVisionarmarm functionarm movementbasebehavior testbehavioral phenotypingdiagnostic tooldigitaldisease classificationdrug developmenteffective therapyexperiencehandheld mobile deviceillness lengthimprovedinsightmachine learning modelmembermicrophonemotor behaviormotor controlmotor deficitmultimodalitynervous system disordernovelnovel strategiesnovel therapeuticsoculomotoropen sourcepersonalized predictionspoint of careprimary outcomeprognosticprognosticationresponsesensorsignal processingtooltreatment response
项目摘要
ABSTRACT
The spinocerebellar ataxias (SCA) are debilitating neurodegenerative diseases that impact a range of
human behaviors including arm function, speech, and vision. Tools that can quantify motor deficits in a
granular and objective manner are needed to support early recognition of clinical disease onset, more
sensitively determine efficacy of a therapy, and make personalized predictions about disease progression.
Such tools are needed for upcoming disease modifying clinical trials in SCAs, in order to reduce sample size
and trial duration and better understand how a given therapy modifies human behaviors. Powered off of the
currently available primary outcome measures for these rare ataxias, clinical trials are likely to face patient
recruitment and retention challenges, especially with multiple co-occurring clinical trials. These challenges may
impede or slow our ability to successfully discover therapies for our patients.
We have recently made substantial progress in capturing multimodal behavioral signals from speech,
eye movement, and arm motor function using everyday technologies: a microphone, iPhone camera, and
computer mouse. Our initial data indicate that these scalable technologies have strong potential to extend
current clinical assessments in ataxia and that our novel machine learning approach for generating disease
severity estimates performs better than the traditional regression model approach. Our algorithms are able to
quantitatively identify signs of ataxia and parkinsonism in SCA individuals' speech and arm movement, even
when absent on clinical assessment. Furthermore, our novel severity estimation algorithm enabled
measurement of disease progression more sensitively than clinical scales. We propose to substantially expand
longitudinal data collection and further develop our novel analytic approaches to train more powerful models for
characterizing and quantifying human motor behavior. The technologies developed have the potential to
facilitate clinical trials aimed at bringing disease modifying therapies to individuals with SCA. While the focus of
this project is on SCA, the novel methodological approaches and data generated are applicable to other
neurodegenerative diseases affecting movement and speech. Furthermore, this project will bring new insight
into how motor abnormalities initially arise and progress.
The overall goal of this project is to develop widely available systems for improving early detection of
clinical disease onset, severity assessment, and prognostication of spinocerebellar ataxias while
simultaneously learning how these disorders impact fine-grained motor behavior.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anoopum Satyawan Gupta其他文献
Anoopum Satyawan Gupta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anoopum Satyawan Gupta', 18)}}的其他基金
A computational approach for quantifying motor behaviors in spinocerebellar ataxias to improve early detection of motor signs and precisely estimate disease severity and disease change
一种量化脊髓小脑共济失调运动行为的计算方法,以改善运动体征的早期检测并精确估计疾病严重程度和疾病变化
- 批准号:
10609864 - 财政年份:2021
- 资助金额:
$ 53.78万 - 项目类别:
A computational approach for quantifying motor behaviors in spinocerebellar ataxias to improve early detection of motor signs and precisely estimate disease severity and disease change
一种量化脊髓小脑共济失调运动行为的计算方法,以改善运动体征的早期检测并精确估计疾病严重程度和疾病变化
- 批准号:
10210639 - 财政年份:2021
- 资助金额:
$ 53.78万 - 项目类别:
Cognitive maps and novel behavioral sequences in the hippocampus
海马体的认知图和新颖的行为序列
- 批准号:
8215940 - 财政年份:2010
- 资助金额:
$ 53.78万 - 项目类别:
Cognitive maps and novel behavioral sequences in the hippocampus
海马体的认知图和新颖的行为序列
- 批准号:
8299136 - 财政年份:2010
- 资助金额:
$ 53.78万 - 项目类别:
Cognitive maps and novel behavioral sequences in the hippocampus
海马体的认知图和新颖的行为序列
- 批准号:
8458547 - 财政年份:2010
- 资助金额:
$ 53.78万 - 项目类别:
Cognitive maps and novel behavioral sequences in the hippocampus
海马体的认知图和新颖的行为序列
- 批准号:
7997101 - 财政年份:2010
- 资助金额:
$ 53.78万 - 项目类别:
相似海外基金
Determining the mechanism of action of cis-acting modifiers on the age of onset of Huntington Disease
确定顺式作用修饰剂对亨廷顿病发病年龄的作用机制
- 批准号:
417256 - 财政年份:2019
- 资助金额:
$ 53.78万 - 项目类别:
Studentship Programs
Effect of age of onset of contraception use on brain functioning.
避孕开始年龄对大脑功能的影响。
- 批准号:
511267-2017 - 财政年份:2017
- 资助金额:
$ 53.78万 - 项目类别:
University Undergraduate Student Research Awards
Non-random occurrence and early age of onset of diverse lymphoid cancers in families supports the existence of genetic risk factors for multiple lymphoid cancers.
家族中多种淋巴癌的非随机发生和发病年龄较早,支持多种淋巴癌存在遗传危险因素。
- 批准号:
347105 - 财政年份:2016
- 资助金额:
$ 53.78万 - 项目类别:
Polish-German Child Bilingualism: The Role of Age of Onset for Long-Term Achievement
波兰-德国儿童双语:发病年龄对长期成就的作用
- 批准号:
277135691 - 财政年份:2015
- 资助金额:
$ 53.78万 - 项目类别:
Research Grants
Bioinformatics strategies to relate age of onset with gene-gene interaction
将发病年龄与基因间相互作用联系起来的生物信息学策略
- 批准号:
9097781 - 财政年份:2015
- 资助金额:
$ 53.78万 - 项目类别:
Early Age-of-Onset AD: Clinical Heterogeneity and Network Degeneration
早期 AD 发病年龄:临床异质性和网络退化
- 批准号:
9212684 - 财政年份:2014
- 资助金额:
$ 53.78万 - 项目类别:
Early Age-of-Onset AD: Clinical Heterogeneity and Network Degeneration
早期 AD 发病年龄:临床异质性和网络退化
- 批准号:
8696557 - 财政年份:2014
- 资助金额:
$ 53.78万 - 项目类别:
Effects of delaying age of onset of binge drinking on adolescent brain development: A proposal to add neuroimaing measures to the CO-Venture Trial.
延迟酗酒的发病年龄对青少年大脑发育的影响:在 CO-Venture 试验中添加神经影像测量的建议。
- 批准号:
267251 - 财政年份:2012
- 资助金额:
$ 53.78万 - 项目类别:
Operating Grants
Stress Effects on Alcohol Consumption: Age of onset and genes in heavy drinkers
压力对饮酒的影响:酗酒者的发病年龄和基因
- 批准号:
8606722 - 财政年份:2012
- 资助金额:
$ 53.78万 - 项目类别:
Marijuana: Neurobiologic Correlates of Age of Onset
大麻:发病年龄的神经生物学相关性
- 批准号:
8644793 - 财政年份:2012
- 资助金额:
$ 53.78万 - 项目类别: