CT and CXR Phenotyping Platform for Assessing COVID-19 Susceptibility and Severity
用于评估 COVID-19 敏感性和严重程度的 CT 和 CXR 表型平台
基本信息
- 批准号:10382425
- 负责人:
- 金额:$ 27.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-02 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAcuteArchitectureArtificial IntelligenceBiological MarkersCOVID-19COVID-19 patientCOVID-19 severityCOVID-19 susceptibilityCase Fatality RatesChestChronic Lung InjuryChronic lung diseaseClinicalCommunicable DiseasesCommunitiesDataDecision TreesDetectionDevelopmentDiseaseDisease susceptibilityEpidemiologic FactorsEvolutionFundingGoalsHeterogeneityImageImmune responseInfectionInflammatoryInjuryIntensive CareLungMachine LearningMapsMeasurementMeasuresMethodologyMethodsModalityOutcomePatient CarePatternPhasePhenotypePlayPredispositionPrognostic MarkerPulmonary InflammationRadiology SpecialtyResearchResolutionResponse ElementsRoentgen RaysRoleSARS-CoV-2 infectionScanningSeverity of illnessSmokingSoftware ToolsStressStructure of parenchyma of lungTechniquesTechnologyThoracic RadiographyTrainingTranslatingUnited StatesUnited States National Institutes of HealthVirusVirus DiseasesX-Ray Computed TomographyX-Ray Medical Imagingacute careacute symptombasechest computed tomographyclinical investigationclinical translationdeep learningdeep neural networkfollow-upgradient boostinghigh riskimage translationimaging platforminterestlearning strategylung injurynovelopen dataopen sourcepandemic diseasepersonalized approachprognostic modelprognosticationradiological imagingradiomicsresponsesevere COVID-19systemic inflammatory responsetherapeutic developmenttool
项目摘要
Abstract
COVID-19 was declared a pandemic by WHO on March 11. Since then, there have been 8.15 million
confirmed cases worldwide with a case fatality rate ranging from 16.3% to 0.1%. In the US, there have been
2,187,202 cases with a 5.4% case fatality rate as of June 16, 2020. The magnitude of this infectious disease
has stressed the need to develop novel methodologies to define who are at the highest risk of developing
acute symptoms. X-Ray (CXR) and Computed Tomography (CT) play a fundamental role in the detection and
follow-up of the COVID-19 lung injury. It also provides a unique opportunity to define quantitative biomarkers
that may identify susceptible subjects to the acute phase of the disease using pre-infection and early infection
radiological exams.
This proposal's broad objective is to provide a better understanding of acute COVID-19 susceptibility markers
based on artificial intelligence approaches on radiological exams, both CT and CXR. CT offers a unique way to
phenotype the lung and its changes. Subtle changes of normal parenchyma have been associated with
systemic inflammation that can be detected on CT. We hypothesize that susceptible subjects for acute COVID-
19 disease evolution will express inflamed normal parenchymal signatures that can be measured on CT scan
prior to the infection or in the early phases of the viral infection. We will develop new computational
approaches to identify radiographic patterns consistent with inflamed normal parenchyma as well as early
COVID-19 injury and compute radiomics signature that can capture the heterogeneity of the radiographic
expression for each lung pattern. We will define new CT-based biomarkers for acute COVID-19 susceptibility
using Gradient Boosting decision trees and feature importance. We will then translate the quantification of the
most relevant features in CXR image using image translation approaches based on deep neural networks.
Finally, we will integrate these automated tools in the CIP workstation using clinically friendly end-to-end
workflows to empower clinical investigations across the world. We will continue the support and dissemination
of this tool across the research community. Over the last 15 years, our group has developed the Chest Imaging
Platform (CIP), an NIH-funded open-source software tool for the automated phenotyping of chest CT scans
that is widely used in the chronic lung disease research community. Since the beginning of the pandemic, CIP
has been used to the characterization of COVID-19 using existing densitometric metrics. Our commitment to
open science in the form of open toolkits that are freely distributed is fundamental to catalyze the application of
AI and imaging in the context of this pandemic.
摘要
2019冠状病毒病于3月11日被世卫组织宣布为大流行。从那以后,
全球确诊病例,病死率为16.3%至0.1%。在美国,
截至2020年6月16日,2,187,202例,病死率为5.4%。这种传染病的严重性
强调有必要开发新的方法来确定谁是最高风险的发展,
急性症状。X射线(CXR)和计算机断层扫描(CT)在检测和
COVID-19肺损伤的随访。它还提供了一个独特的机会,以确定定量生物标志物
可以使用感染前和早期感染来识别对疾病急性期易感的受试者,
放射学检查。
该提案的总体目标是更好地了解急性COVID-19易感性标志物
基于人工智能方法的放射学检查,包括CT和CXR。CT提供了一种独特的方法,
表型的肺及其变化。正常软组织的细微变化与
全身性炎症,可以在CT上检测到。我们假设,急性COVID-1的易感人群-
19疾病演变将表达可在CT扫描上测量的发炎的正常实质特征
在感染之前或在病毒感染的早期阶段。我们将开发新的计算
方法来确定放射学模式符合发炎的正常实质以及早期
COVID-19损伤和计算放射组学特征,可以捕获放射成像的异质性
每个肺模式的表达。我们将定义新的基于CT的急性COVID-19易感性生物标志物
使用梯度提升决策树和特征重要性。然后,我们将翻译的量化
使用基于深度神经网络的图像翻译方法来识别CXR图像中最相关的特征。
最后,我们将使用临床友好的端到端将这些自动化工具集成到CIP工作站中
工作流程,以支持世界各地的临床研究。我们将继续支持和传播
这个工具在整个研究界。在过去的15年里,我们的团队开发了胸部成像
平台(CIP),NIH资助的用于胸部CT扫描自动表型分析的开源软件工具
被广泛应用于慢性肺病研究领域。自疫情爆发以来,
已被用于使用现有密度度量表征COVID-19。我们致力于
以自由分发的开放工具包的形式出现的开放科学是促进
在这场大流行的背景下,人工智能和成像。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial intelligence in functional imaging of the lung.
肺功能成像中的人工智能。
- DOI:10.1259/bjr.20210527
- 发表时间:2022-04-01
- 期刊:
- 影响因子:0
- 作者:San José Estépar R
- 通讯作者:San José Estépar R
Deep learning-based lesion subtyping and prediction of clinical outcomes in COVID-19 pneumonia using chest CT.
- DOI:10.1038/s41598-022-13298-8
- 发表时间:2022-06-07
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Raul San Jose Estepar其他文献
Raul San Jose Estepar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Raul San Jose Estepar', 18)}}的其他基金
Contributions of pulmonary arterial and venous remodeling to HFpEF in the elderly
肺动脉和静脉重构对老年人 HFpEF 的影响
- 批准号:
10446349 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
Contributions of pulmonary arterial and venous remodeling to HFpEF in the elderly
肺动脉和静脉重构对老年人 HFpEF 的影响
- 批准号:
10621906 - 财政年份:2022
- 资助金额:
$ 27.25万 - 项目类别:
CT and CXR Phenotyping Platform for Assessing COVID-19 Susceptibility and Severity
用于评估 COVID-19 敏感性和严重程度的 CT 和 CXR 表型平台
- 批准号:
10196276 - 财政年份:2021
- 资助金额:
$ 27.25万 - 项目类别:
The clinical impact of pulmonary vascular remodeling in smokers
吸烟者肺血管重塑的临床影响
- 批准号:
8418060 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
Airway Inspector: a chest imaging biomarker software platform for COPD
Airway Inspector:用于 COPD 的胸部成像生物标志物软件平台
- 批准号:
8421710 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
Airway Inspector: a chest imaging biomarker software platform for COPD
Airway Inspector:用于 COPD 的胸部成像生物标志物软件平台
- 批准号:
8605217 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
The clinical impact of pulmonary vascular remodeling in smokers
吸烟者肺血管重塑的临床影响
- 批准号:
8793809 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
The clinical impact of longitudinal measures of cardiac and pulmonary vascular morphology in smokers
吸烟者心脏和肺血管形态纵向测量的临床影响
- 批准号:
9982372 - 财政年份:2013
- 资助金额:
$ 27.25万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant