Regulation of Axonal Transport At Branch Junctions
分支连接处轴突运输的调节
基本信息
- 批准号:10383151
- 负责人:
- 金额:$ 34.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAfferent NeuronsAxonAxonal TransportBehaviorBiologicalCellsColorCytoskeletonDataDendritesDevelopmentDiseaseDistalDynein ATPaseEmbryoEmbryonic DevelopmentEpilepsyFunctional RegenerationFunctional disorderGeneticGoalsGrowthHealthHumanImpairmentIn SituInjuryKinesinKnowledgeLightLinkLocationLysosomesMAP1 Microtubule-Associated ProteinMediatingMembraneMembrane ProteinsMicrotubule-Associated ProteinsMicrotubulesMissionMitochondriaModelingMolecularMorphogenesisMotorNervous System PhysiologyNervous system structureNeurodegenerative DisordersNeuronsOrangesPresynaptic TerminalsProteinsRNARecovery of FunctionRegulationResearchRoleRouteShapesSignal TransductionSliceSpecificitySpeedSpinal GangliaSynapsesTestingTimeUnited States National Institutes of Healthanterograde transportbasecell agecell typeexperimental studyinsightinterestmolecular imagingnerve injurynervous system disordernoveloptogeneticspreferencerecruitresponsesynaptic functiontooltrafficking
项目摘要
Axonal transport is essential to development and function of the nervous system. Axonal transport
relies on motor proteins (kinesins and dynein) to move protein, membrane and RNA cargos along microtubules.
It is especially important to long and often highly branched axons that requires building blocks made in the cell
body or signals received at axonal terminals to be transported for long distance. Recently studies have
identified many regulatory mechanisms, including the interactions between motor proteins with lattice-bound
microtubule associated proteins (MAPs), in different axonal regions. However, how axonal transport is
regulated to steer cargos into and out of branches is not well understood. This is an outstanding problem as
axonal branches are present throughout the nervous system. They not only define neuronal shape, but also
control synaptic connectivity and specificity, influence structural plasticity, and promote functional regeneration
after injury. The proposed study will tackle this under-studied problem by building on our long-term interest in
branch morphogenesis and cytoskeleton regulation as well as a recent discovery of a MAP in branch
development and transport regulation. Our preliminary data showed that transport at branch junctions is highly
selective as cargos are preferentially transported into growing branches. In addition, we also found that MAP7,
a MAP that is localized to branch junctions and interacts with the plus end motor kinesin-1, influences transport
behavior and branch growth. We thus hypothesize that axonal transport at branch junctions is controlled by a
selective routing mechanism that is mediated by specific motor-MAP interactions. To test this hypothesis, we
will: 1) establish a functional link between selective transport and branch growth; 2) dissect the mechanism
mediated by MAP7; and 3) establish selective routing as a common feature in axonal transport. By focusing
on an important region of the axon that has not been studied in the past, these studies will not only fill in a gap
in our understanding of axonal transport, but also provide new insights into synaptic development and function.
Given the importance of axonal transport in many neurological and neurodegenerative disorders, and the
association of MAP7 and kinesin-1 with epilepsy and ALS, our proposed studies of a basic neuronal cell
biological problem will provide new knowledge to uncover disease mechanisms, and thus are highly relevant to
the NIH mission to understand and enhance human health.
轴突转运对神经系统的发育和功能至关重要。轴突运输
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Le Ma其他文献
Le Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Le Ma', 18)}}的其他基金
Investigating the Role and Regulation of the MAP7 Family Proteins in Axonal Morphogenesis and Function
研究 MAP7 家族蛋白在轴突形态发生和功能中的作用和调节
- 批准号:
10319167 - 财政年份:2020
- 资助金额:
$ 34.13万 - 项目类别:
Supplement: Regulation of Axonal Transport At Branch Junctions
补充:分支连接处轴突运输的调节
- 批准号:
10354520 - 财政年份:2020
- 资助金额:
$ 34.13万 - 项目类别:
Investigating the Role and Regulation of the MAP7 Family Proteins in Axonal Morphogenesis and Function
研究 MAP7 家族蛋白在轴突形态发生和功能中的作用和调节
- 批准号:
10534758 - 财政年份:2020
- 资助金额:
$ 34.13万 - 项目类别:
Regulation of Axonal Transport At Branch Junctions
分支连接处轴突运输的调节
- 批准号:
10616474 - 财政年份:2020
- 资助金额:
$ 34.13万 - 项目类别:
Molecular Mechanisms of Axon Branching in Synaptic Development
突触发育中轴突分支的分子机制
- 批准号:
8078193 - 财政年份:2009
- 资助金额:
$ 34.13万 - 项目类别:
Molecular and Cellular Mechanisms of Axon Branching in Neural Circuit Development
神经回路发育中轴突分支的分子和细胞机制
- 批准号:
8761846 - 财政年份:2009
- 资助金额:
$ 34.13万 - 项目类别:
Molecular and Cellular Mechanisms of Axon Branching in Neural Circuit Development
神经回路发育中轴突分支的分子和细胞机制
- 批准号:
8928250 - 财政年份:2009
- 资助金额:
$ 34.13万 - 项目类别:
Molecular and Cellular Mechanisms of Axon Branching in Neural Circuit Development
神经回路发育中轴突分支的分子和细胞机制
- 批准号:
9097799 - 财政年份:2009
- 资助金额:
$ 34.13万 - 项目类别:
Molecular Mechanisms of Axon Branching in Synaptic Development
突触发育中轴突分支的分子机制
- 批准号:
8274702 - 财政年份:2009
- 资助金额:
$ 34.13万 - 项目类别:
Molecular Mechanisms of Axon Branching in Synaptic Development
突触发育中轴突分支的分子机制
- 批准号:
8470721 - 财政年份:2009
- 资助金额:
$ 34.13万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 34.13万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 34.13万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 34.13万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 34.13万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 34.13万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 34.13万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 34.13万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 34.13万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




