Improving cardiovascular disease modeling using human pluripotent stem cell-derived cardiac fibroblasts

使用人类多能干细胞来源的心脏成纤维细胞改善心血管疾病模型

基本信息

项目摘要

Project Summary: Annually, there are ~790,000 cases of myocardial infarction (MI) in the United States. Typically, MI progresses into heart failure where patients have a high risk of mortality within 5 years after diagnosis. While animal models provide a valuable model system of MI, interspecies differences lead to inaccurate recapitulation of human myocardium. To address this, our lab originally developed 3D human cardiac organoids through self-assembly of hPSC-CMs, human primary adult cardiac fibroblasts (adult-cFbs), endothelial cells, and stromal cells. Further, we leveraged the oxygen diffusion limitation in 3D human cardiac organoids along with chronic adrenergic stimulation to generate an organotypic model of post-MI hearts. The human cardiac infarct organoids recapitulated transcriptional, structural and functional hallmarks of post-MI myocardium. However, the use of primary, non-myocyte cell populations in our current organoids limit their potential to mimic patient-specific myocardium. To develop human isogenic cardiac organoids, we are collaborating with Dr. Sean Palecek at the University of Wisconsin-Madison to derive cardiac fibroblasts from human pluripotent stem cells (hPSC) to replace adult-cFbs in our cardiac organoid model. Dr. Palecek’s lab has developed expertise to direct hPSC differentiation into cardiac fibroblasts (hPSC-cFbs) in 2 different lineages: epicardial-derived fibroblasts (hPSC-cFb(EpiC)s) and second heart field progenitor-derived fibroblasts (hPSC- cFb(SHFP)s). While both lineages contribute to cardiac fibrosis and are functionally similar, in murine hearts, the epicardium is the predominate source of ventricular cardiac fibroblasts while a small population arise from the endocardium. In addition, the enhanced maturation may be needed for the hPSC-cFb(EpiC)s to replace human adult-cFbs, as our preliminary data that showed that prolonged culture improved cell organization of hPSC-cFb(SHFP)s in cardiac organoids when compared to that of adult-cFb organoids. The central hypothesize of this proposal is that high passage hPSC-cFb(EpiC)s will best replicate adult-cFb transcriptomics and functionality. The proposal is innovative in that, for the first time, we will identify a suitable hPSC-cFb population to replace adult-cFbs to develop an isogenic 3D organotypic model of human myocardium. Our long-term goal is to develop patient-specific cardiac organoids for in vitro disease modeling and drug testing. Accordingly, we will pursue the following two Aims: 1) Determine the effectiveness of high passage hPSC- cFb(EpiC)s to replicate the transcriptomics and functionality of adult cFbs, and 2) Determine the effectiveness of human cardiac organoids composed of high passage hPSC-cFb(EpiC)s in modeling post-MI human myocardium and responsiveness to anti-MI therapeutics. We also will perform single cell RNA-seq to examine the heterogeneity of hPSC-cFb(EpiC)s in response to our infarction protocol. Completion of this study would provide the first step towards an isogenic human myocardium model. The single cell RNA-seq studies will reveal the various roles/subpopulations of cardiac fibroblasts in post-MI human myocardium.
项目总结:美国每年约有79万例心肌梗死(MI)病例。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multicellular Human Cardiac Organoids Transcriptomically Model Distinct Tissue-Level Features of Adult Myocardium.
Decellularized heart extracellular matrix alleviates activation of hiPSC-derived cardiac fibroblasts.
  • DOI:
    10.1016/j.bioactmat.2023.08.023
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Matthew Kerr其他文献

Charles Matthew Kerr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Matthew Kerr', 18)}}的其他基金

Improving cardiovascular disease modeling using human pluripotent stem cell-derived cardiac fibroblasts
使用人类多能干细胞来源的心脏成纤维细胞改善心血管疾病模型
  • 批准号:
    10462472
  • 财政年份:
    2020
  • 资助金额:
    $ 3.46万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 3.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了