Learning Dynamics of Biological Processes from Time Course Omics Datasets
从时间过程组学数据集中学习生物过程的动力学
基本信息
- 批准号:10473720
- 负责人:
- 金额:$ 35.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArchitectureBasic ScienceBehaviorBiologicalBiological ProcessClinicalCollectionComplexComputer softwareDataData AnalysesData SetDecision TreesDevelopmentDevelopmental ProcessDimensionsDisease ProgressionDrosophila genusEtiologyGene ProteinsGenesGroupingImmune System DiseasesImmune responseInnate Immune ResponseKnowledgeLeadLearningMethodologyMethodsModelingMonitorNaturePathway AnalysisPathway interactionsPatientsPatternProcessResearchResearch Project GrantsRoleSamplingScientistSeriesSilicon DioxideSystemTechniquesTimeUncertaintyValidationVariantbasebiological systemsclinical practicedisease prognosisdynamic systemexperimental studyhigh dimensionalityinnovationinsightlearning algorithmlearning strategymouse modelnovelopen sourceorgan growthprotein protein interactionrandom foresttemporal measurement
项目摘要
Complex biological processes, including organ development, immune response and disease progression,
are inherently dynamic. Learning their regulatory architecture requires understanding how
components of a large system dynamically interact with each other and give rise to emergent behavior.
Recent experimental advances have made ii possible to investigate these biological systems in a
data-driven fashion al high temporal resolution, allowing identification of new genes and their regulatory
interactions. Longitudinal omics data sets are becoming increasingly common in clinical practice
as well. Information on these collections of interacting genes can be integrated to gain systems-level
insights into the roles of biological pathways and processes, including progression of diseases. Consequently,
developing interpretable methods for learning functional relationships among genes, proteins
or metabolites from high-dimensional time series data has become a timely research problem.
The nature of these time-course data sets presents exciting opportunities and interesting challenges
from a statistical perspective. Typical time-course omics data sets are challenging because of
their high-dimensionality and non-linear relationships among system components. To tackle these challenges,
one needs sophisticated dimension-reduction techniques that are biologically meaningful, computationally
efficient and allow uncertainty quantification. Methods that incorporate prior biological
information (e.g., pathway membership, protein-protein interactions) into the data analysis are good
candidates for analyzing such high-dimensional systems using small samples.
Here, we will develop three core methods to address the above challenges - (Aim 1): an empirical
Bayes framework for clustering high-dimensional omics time-course data using prior biological knowledge;
(Aim 2): a quantile-based Granger causality framework for learning interactions among genes
or metabolites from their lead-lag relationships; and (Aim 3): a decision tree ensemble framework for
searching cascades of interactions among genes from their temporal expression profiles. Our interdisciplinary
team of statisticians and scientists will analyze time-course omics data from three research
projects: (i) innate immune response systems in Drosophila, (ii) developmental process in mouse models,
and (ii) longitudinal metabolite profiling of TB patients. These insights will be used to build and
validate our methodology, which will be implemented in a publicly available software. This proposal is
innovative in its incorporation of prior biological knowledge in the framework of novel dimension reduction
techniques for interrogating high-dimensional time-course omics data. This research is significant in
that it will impact basic sciences by elucidating data-driven, testable hypotheses on the regulatory architecture
of biological processes, and clinical practice by monitoring disease progression and prognosis.
复杂的生物过程,包括器官发育、免疫反应和疾病进展,
从本质上讲是动态的。了解他们的监管架构需要了解如何
大系统的组件之间动态地相互作用,并产生紧急行为。
最近的实验进展使研究这些生物系统成为可能。
数据驱动的时尚和高时间分辨率,允许识别新的基因及其调控
互动。纵向组学数据集在临床实践中变得越来越常见
也是。关于这些相互作用的基因集合的信息可以被整合以获得系统级的
洞察生物途径和过程的作用,包括疾病的进展。因此,
开发可解释的方法来学习基因、蛋白质之间的功能关系
或从高维时间序列数据中提取代谢物已成为一个及时的研究问题。
这些时间进程数据集的性质带来了令人兴奋的机遇和有趣的挑战
从统计学的角度来看。典型的时间进程组学数据集具有挑战性,因为
它们的高维性和系统组件之间的非线性关系。为了应对这些挑战,
人们需要复杂的降维技术,这些技术在生物学上、计算上都是有意义的
效率高,并允许不确定量化。结合先前生物学的方法
进入数据分析的信息(例如,通路成员、蛋白质-蛋白质相互作用)是好的
使用小样本分析这种高维系统的候选对象。
在这里,我们将开发三个核心方法来应对上述挑战-(目标1):经验性
使用先验生物学知识对高维组学时间进程数据进行聚类的贝叶斯框架
(目标2):基于分位数的Granger因果关系框架用于学习基因之间的相互作用
或来自其领先-滞后关系的代谢物;以及(目标3):决策树集成框架,用于
从基因的时间表达谱中搜索基因之间相互作用的级联。我们的跨学科
一组统计学家和科学家将分析来自三项研究的时间进程组学数据
项目:(I)果蝇的先天免疫反应系统,(Ii)小鼠模型的发育过程,
和(Ii)结核病患者的纵向代谢物图谱。这些见解将被用来建立和
验证我们的方法,这将在一个公开可用的软件中实现。这项建议是
创新性地将先前的生物学知识纳入到新的降维框架中
用于询问高维时间进程组学数据的技术。这项研究具有重要的意义
它将通过阐明关于监管架构的数据驱动的、可测试的假设来影响基础科学
通过监测疾病的进展和预后,对生物过程和临床实践进行研究。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Financial Networks with High-frequency Trade Data.
- DOI:10.1080/26941899.2023.2166624
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:Kara Karpman;Suman S. Basu;D. Easley;Sanghee Kim
- 通讯作者:Kara Karpman;Suman S. Basu;D. Easley;Sanghee Kim
Sparse Identification and Estimation of Large-Scale Vector AutoRegressive Moving Averages
大规模向量自回归移动平均线的稀疏识别和估计
- DOI:10.1080/01621459.2021.1942013
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Wilms, Ines;Basu, Sumanta;Bien, Jacob;Matteson, David S.
- 通讯作者:Matteson, David S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sumanta Basu其他文献
Sumanta Basu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sumanta Basu', 18)}}的其他基金
Learning Dynamics of Biological Processes from Time Course Omics Datasets
从时间过程组学数据集中学习生物过程的动力学
- 批准号:
10021429 - 财政年份:2019
- 资助金额:
$ 35.74万 - 项目类别:
Learning Dynamics of Biological Processes from Time Course Omics Datasets
从时间过程组学数据集中学习生物过程的动力学
- 批准号:
9903643 - 财政年份:2019
- 资助金额:
$ 35.74万 - 项目类别:
Learning Dynamics of Biological Processes from Time Course Omics Datasets
从时间过程组学数据集中学习生物过程的动力学
- 批准号:
10242091 - 财政年份:2019
- 资助金额:
$ 35.74万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 35.74万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 35.74万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 35.74万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2020
- 资助金额:
$ 35.74万 - 项目类别:
Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
- 批准号:
2008772 - 财政年份:2020
- 资助金额:
$ 35.74万 - 项目类别:
Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
- 批准号:
533529-2018 - 财政年份:2019
- 资助金额:
$ 35.74万 - 项目类别:
Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
- 批准号:
541812-2019 - 财政年份:2019
- 资助金额:
$ 35.74万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 35.74万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759796 - 财政年份:2018
- 资助金额:
$ 35.74万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759807 - 财政年份:2018
- 资助金额:
$ 35.74万 - 项目类别:
Standard Grant