Learning Dynamics of Biological Processes from Time Course Omics Datasets
从时间过程组学数据集中学习生物过程的动力学
基本信息
- 批准号:9903643
- 负责人:
- 金额:$ 35.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Complex biological processes, including organ development, immune response and disease progression,
are inherently dynamic. Learning their regulatory architecture requires understanding how
components of a large system dynamically interact with each other and give rise to emergent behavior.
Recent experimental advances have made ii possible to investigate these biological systems in a
data-driven fashion al high temporal resolution, allowing identification of new genes and their regulatory
interactions. Longitudinal omics data sets are becoming increasingly common in clinical practice
as well. Information on these collections of interacting genes can be integrated to gain systems-level
insights into the roles of biological pathways and processes, including progression of diseases. Consequently,
developing interpretable methods for learning functional relationships among genes, proteins
or metabolites from high-dimensional time series data has become a timely research problem.
The nature of these time-course data sets presents exciting opportunities and interesting challenges
from a statistical perspective. Typical time-course omics data sets are challenging because of
their high-dimensionality and non-linear relationships among system components. To tackle these challenges,
one needs sophisticated dimension-reduction techniques that are biologically meaningful, computationally
efficient and allow uncertainty quantification. Methods that incorporate prior biological
information (e.g., pathway membership, protein-protein interactions) into the data analysis are good
candidates for analyzing such high-dimensional systems using small samples.
Here, we will develop three core methods to address the above challenges - (Aim 1): an empirical
Bayes framework for clustering high-dimensional omics time-course data using prior biological knowledge;
(Aim 2): a quantile-based Granger causality framework for learning interactions among genes
or metabolites from their lead-lag relationships; and (Aim 3): a decision tree ensemble framework for
searching cascades of interactions among genes from their temporal expression profiles. Our interdisciplinary
team of statisticians and scientists will analyze time-course omics data from three research
projects: (i) innate immune response systems in Drosophila, (ii) developmental process in mouse models,
and (ii) longitudinal metabolite profiling of TB patients. These insights will be used to build and
validate our methodology, which will be implemented in a publicly available software. This proposal is
innovative in its incorporation of prior biological knowledge in the framework of novel dimension reduction
techniques for interrogating high-dimensional time-course omics data. This research is significant in
that it will impact basic sciences by elucidating data-driven, testable hypotheses on the regulatory architecture
of biological processes, and clinical practice by monitoring disease progression and prognosis.
复杂的生物过程,包括器官发育、免疫反应和疾病进展,
从本质上讲是动态的。了解他们的监管架构需要了解如何
大系统的组件之间动态地相互作用,并产生紧急行为。
最近的实验进展使研究这些生物系统成为可能。
数据驱动的时尚和高时间分辨率,允许识别新的基因及其调控
互动。纵向组学数据集在临床实践中变得越来越常见
也是。关于这些相互作用的基因集合的信息可以被整合以获得系统级的
洞察生物途径和过程的作用,包括疾病的进展。因此,
开发可解释的方法来学习基因、蛋白质之间的功能关系
或从高维时间序列数据中提取代谢物已成为一个及时的研究问题。
这些时间进程数据集的性质带来了令人兴奋的机遇和有趣的挑战
从统计学的角度来看。典型的时间进程组学数据集具有挑战性,因为
它们的高维性和系统组件之间的非线性关系。为了应对这些挑战,
人们需要复杂的降维技术,这些技术在生物学上、计算上都是有意义的
效率高,并允许不确定量化。结合先前生物学的方法
进入数据分析的信息(例如,通路成员、蛋白质-蛋白质相互作用)是好的
使用小样本分析这种高维系统的候选对象。
在这里,我们将开发三个核心方法来应对上述挑战-(目标1):经验性
使用先验生物学知识对高维组学时间进程数据进行聚类的贝叶斯框架
(目标2):基于分位数的Granger因果关系框架用于学习基因之间的相互作用
或来自其领先-滞后关系的代谢物;以及(目标3):决策树集成框架,用于
从基因的时间表达谱中搜索基因之间相互作用的级联。我们的跨学科
一组统计学家和科学家将分析来自三项研究的时间进程组学数据
项目:(I)果蝇的先天免疫反应系统,(Ii)小鼠模型的发育过程,
和(Ii)结核病患者的纵向代谢物图谱。这些见解将被用来建立和
验证我们的方法,这将在一个公开可用的软件中实现。这项建议是
创新性地将先前的生物学知识纳入到新的降维框架中
用于询问高维时间进程组学数据的技术。这项研究具有重要的意义
它将通过阐明关于监管架构的数据驱动的、可测试的假设来影响基础科学
通过监测疾病的进展和预后,对生物过程和临床实践进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sumanta Basu其他文献
Sumanta Basu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sumanta Basu', 18)}}的其他基金
Learning Dynamics of Biological Processes from Time Course Omics Datasets
从时间过程组学数据集中学习生物过程的动力学
- 批准号:
10473720 - 财政年份:2019
- 资助金额:
$ 35.14万 - 项目类别:
Learning Dynamics of Biological Processes from Time Course Omics Datasets
从时间过程组学数据集中学习生物过程的动力学
- 批准号:
10021429 - 财政年份:2019
- 资助金额:
$ 35.14万 - 项目类别:
Learning Dynamics of Biological Processes from Time Course Omics Datasets
从时间过程组学数据集中学习生物过程的动力学
- 批准号:
10242091 - 财政年份:2019
- 资助金额:
$ 35.14万 - 项目类别:
相似海外基金
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 35.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Chinese language versions of the National Alzheimer's Coordinating Center's Uniform Data Set version 4: a linguistic and cultural adaptation study
国家阿尔茨海默病协调中心统一数据集第4版中文版:语言和文化适应研究
- 批准号:
10740587 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
Study of structure formation and galaxy evolution based on big data set from Subaru Telescope
基于斯巴鲁望远镜大数据集的结构形成和星系演化研究
- 批准号:
23H05438 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Detailed invesitigation of the light fading process of dyes used for traditional Japanese paintings and application of the data set to online risk assessment tools.
对日本传统绘画所用染料的光褪色过程进行详细研究,并将数据集应用于在线风险评估工具。
- 批准号:
23KK0012 - 财政年份:2023
- 资助金额:
$ 35.14万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Development of an open-source reference data set, image repository and interactive training tool for bone damage assessment in inflammatory arthritis
开发用于炎症性关节炎骨损伤评估的开源参考数据集、图像存储库和交互式培训工具
- 批准号:
460681 - 财政年份:2022
- 资助金额:
$ 35.14万 - 项目类别:
Miscellaneous Programs
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
22H00796 - 财政年份:2022
- 资助金额:
$ 35.14万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insights into the complexities of a seismogenic subduction zone: Analysis of a high-quality aftershock data set from the 2017 Tehuantepec (M8.2) offshore Mexico earthquake
洞察孕震俯冲带的复杂性:2017 年墨西哥特万特佩克 (M8.2) 近海地震的高质量余震数据集分析
- 批准号:
2054442 - 财政年份:2021
- 资助金额:
$ 35.14万 - 项目类别:
Continuing Grant
Analysis of the J-SPEED/Emergency Medical Team Minimum Data Set of Japan
日本J-SPEED/紧急医疗队最低数据集分析
- 批准号:
21K09020 - 财政年份:2021
- 资助金额:
$ 35.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Digitization and Analysis of the Bills of Mortality Data Set
死亡账单数据集的数字化和分析
- 批准号:
2120311 - 财政年份:2021
- 资助金额:
$ 35.14万 - 项目类别:
Standard Grant
Benchmark Data Set for Damage Mechanics Challenge on Brittle-Ductile Materials
脆性材料损伤力学挑战的基准数据集
- 批准号:
1932312 - 财政年份:2020
- 资助金额:
$ 35.14万 - 项目类别:
Standard Grant