Multiscale Modeling of Protein Kinase Structure, Catalysis and Allostery

蛋白激酶结构、催化和变构的多尺度建模

基本信息

  • 批准号:
    10473749
  • 负责人:
  • 金额:
    $ 33.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Multiscale Modeling of Protein Kinase Structure, Catalysis and Allostery PROJECT SUMMARY/ABSTRACT The long-term goal of this research is to advance our understanding of the catalytic and regulatory mechanisms of complex enzymatic systems and the roles of protein dynamics in enzyme function. Protein kinase (PK), the focus of this study, is an attractive system for this purpose, because it involves both large-scale conformational change and enzymatic catalysis. Moreover, because of its pathological significance, understanding PK’s molecular mechanism is of fundamental importance in kinase research and also may provide new insights into the development of improved therapies against kinases. Our central hypothesis, based on our recent studies and enzyme kinetic data, is that the catalytic activity of PK is closely associated with its regulatory function. Therefore, any change in regulatory activity affects the catalytic activity of the kinase, which occurs through allosteric modulation of underlying protein dynamics, and together control overall activity of PK. This contrasts with the conventional view that the inactive-to-active conformational change is the main mechanism for regulating kinase activity. Our objective in this grant is to examine these two contrasting views on the regulation of kinase activity by the parallel study of two important kinases, insulin receptor kinase (IRK) and adenylate kinase (AdK), which play critical roles in cell homeostasis, and elucidate their complete molecular mechanisms. These objectives will be accomplished through quantitative modeling of their conformational change, ligand binding and catalysis in key functional states, including the fully active and inactive states. The proposed research involves development of new multiscale simulation methods combining quantum, molecular and statistical mechanical methods and their extension to permit rapid and accurate determination of kinase mechanisms. Our specific AIMs are: (1) the development of effective multiscale simulation methods integrating the ab initio/density functional theory (AI/DFT) and semiempirical (SE) QM/MM methods with the string simulation methods in CHARMM, their acceleration through advanced parallelization and accelerator algorithms and reaction-specific parameterizations, and development of efficient alchemical free energy simulation methods overcoming the limitations of existing methods; 2) elucidation of the mechanisms of IRK catalysis and conformational change and the connection between its intrinsic protein motions and catalysis of IRK; and 3) determination of the catalytic mechanism of AdK and the role of active site residues in controlling the active site and global protein dynamics and the overall activity of AdK. The completion of the proposed study will deepen the mechanistic understanding of these kinases and the role of protein dynamics in their catalysis. Experimental verification of computational results will also be made by characterization of their kinetic and structural parameters via collaboration with an experimental group. Finally, the theoretical methods developed are general and can be applied readily to numerous enzymatic systems involving conformational changes and catalysis, such as ATP/GTPases and various motor proteins.
蛋白激酶的结构、催化和变性的多尺度模拟 项目总结/摘要 这项研究的长期目标是促进我们对催化和调节机制的理解 复杂的酶系统和蛋白质动力学在酶功能中的作用。蛋白激酶(PK), 这项研究的重点,是一个有吸引力的系统,因为它涉及大规模的构象, 变化和酶催化。此外,由于其病理意义,了解PK的 分子机制在激酶研究中具有根本的重要性,也可能为激酶的研究提供新的见解。 开发针对激酶的改良疗法。根据我们最近的研究, 和酶动力学数据,是PK的催化活性与其调节功能密切相关。 因此,调节活性的任何变化都会影响激酶的催化活性,这通过以下方式发生: 潜在的蛋白质动力学的变构调节,并一起控制PK的总体活性。此相反 传统观点认为,非活性到活性的构象变化是调节 激酶活性我们的目标是在这个补助金是检查这两个截然不同的观点调节激酶 通过对两种重要激酶,胰岛素受体激酶(IRK)和腺苷酸激酶(AdK)的平行研究, 其在细胞内稳态中起关键作用,并阐明其完整的分子机制。这些 目标将通过定量模拟它们的构象变化、配体结合和 关键功能状态下的催化,包括完全活性和非活性状态。拟议的研究涉及 结合量子、分子和统计力学的新的多尺度模拟方法的发展 方法及其扩展,以允许快速和准确地确定激酶机制。我们的具体 目标是:(1)发展有效的多尺度模拟方法,结合从头算/密度 泛函理论(AI/DFT)和半经验(SE)QM/MM方法与弦模拟方法, CHARMM,通过高级并行化和加速器算法以及特定于反应的 参数化,并开发有效的炼金术自由能模拟方法,克服 现有方法的局限性; 2)阐明IRK催化和构象变化的机制 以及其内在蛋白质运动与IRK催化作用之间的关系; 3)测定IRK的催化活性。 AdK的作用机制以及活性位点残基在控制活性位点和整体蛋白质动力学中的作用 和AdK的整体活性。完成拟议的研究将加深对机制的认识 这些激酶和蛋白质动力学在其催化中的作用。计算的实验验证 结果也将通过表征其动力学和结构参数,通过与 实验组最后,所发展的理论方法是通用的,可以很容易地应用于 许多涉及构象变化和催化的酶系统,如ATP/GTP酶和 各种马达蛋白。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kwangho Nam其他文献

Kwangho Nam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kwangho Nam', 18)}}的其他基金

EnzyDock-based Multistate and Multiscale Tools for Covalent Drug Design
基于 EnzyDock 的多状态和多尺度共价药物设计工具
  • 批准号:
    10575904
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
Multiscale Modeling of Protein Kinase Structure, Catalysis and Allostery
蛋白激酶结构、催化和变构的多尺度建模
  • 批准号:
    10016867
  • 财政年份:
    2019
  • 资助金额:
    $ 33.32万
  • 项目类别:
Multiscale Modeling of Protein Kinase Structure, Catalysis and Allostery
蛋白激酶结构、催化和变构的多尺度建模
  • 批准号:
    10240612
  • 财政年份:
    2019
  • 资助金额:
    $ 33.32万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 33.32万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了