EnzyDock-based Multistate and Multiscale Tools for Covalent Drug Design

基于 EnzyDock 的多状态和多尺度共价药物设计工具

基本信息

  • 批准号:
    10575904
  • 负责人:
  • 金额:
    $ 19.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT In recent years, FDA has approved a growing number of drugs that are covalently linked to target biological molecules. To expand the development of covalent inhibitors, technologies more specific to the discovery of such inhibitors are needed. It is also necessary to address concerns regarding off-site reactivity and toxicity associated with covalent drugs. The particular focus of this proposal is to develop multiscale in silico covalent docking approaches by integrating robust quantum mechanical and molecular mechanical (QM/MM) potentials with the EnzyDock docking platform, thus enabling explicit modeling of multi-step chemical events and their energetic contributions during the search for docked poses. Current docking approaches lack the ability to perform covalent bond formation in a manner consistent with an inhibitor’s pre-covalent binding mode, as well as with the reaction transition state and covalently bonded mode. This wanting ability not only hampers the fundamental understanding of warhead-target reactivity, but also poses a technical barrier for advancing in silico docking strategies. Indeed, many existing docking programs offer the capacity to perform covalent docking but in an ad hoc fashion, as covalent docking was not considered from the design phase of the program development. With the goal to overcome this technical challenge, two specific aims are: AIM 1 is to develop a multiscale QM/MM/EnzyDock covalent docking method. In this development, EnzyDock will serve as the primary docking platform and robust semiempirical QM/MM potentials will be developed, calibrated for each specific warhead- target reaction type and combined with EnzyDock. In addition, we will develop and implement the generalized Born (GB) solvation model with the QM/MM potential framework to improve the energetics of QM/MM-docked poses. AIM 2 will apply the QM/MM/EnzyDock approach developed in AIM 1 to establish effective workflow for in silico screening of large covalent inhibitor databases. Specifically, two workflows will be explored: The first workflow is based on docking with a predefined covalent attachment site, which is employed in most covalent docking programs. The second workflow entails a dynamic approach to covalent docking, in which covalent attachment sites on the ligand are searched and determined on the fly during docking using cheminformatics analysis and spatial proximity with target residues in the binding pocket. In this research, the study will be limited to the warheads that react only with cysteine residues, while additional target residues, reaction types and warheads will be considered in future research to construct a more comprehensive warhead-target reaction database. Thus, the two workflows will be tested and benchmarked against known structures and kinetic/thermodynamic data of drug-Cys covalent systems. We expect that the methods developed in this project will make the in silico covalent inhibitor discovery more powerful and help understand electrophilic-target reactivity for use in warhead design and selection.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kwangho Nam其他文献

Kwangho Nam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kwangho Nam', 18)}}的其他基金

Multiscale Modeling of Protein Kinase Structure, Catalysis and Allostery
蛋白激酶结构、催化和变构的多尺度建模
  • 批准号:
    10473749
  • 财政年份:
    2019
  • 资助金额:
    $ 19.93万
  • 项目类别:
Multiscale Modeling of Protein Kinase Structure, Catalysis and Allostery
蛋白激酶结构、催化和变构的多尺度建模
  • 批准号:
    10016867
  • 财政年份:
    2019
  • 资助金额:
    $ 19.93万
  • 项目类别:
Multiscale Modeling of Protein Kinase Structure, Catalysis and Allostery
蛋白激酶结构、催化和变构的多尺度建模
  • 批准号:
    10240612
  • 财政年份:
    2019
  • 资助金额:
    $ 19.93万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 19.93万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了