Impact of actin binding protein Coronin 1C in the pathogenesis of Parkinson's disease
肌动蛋白结合蛋白 Coronin 1C 在帕金森病发病机制中的影响
基本信息
- 批准号:10392204
- 负责人:
- 金额:$ 23.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:Actin-Binding ProteinAddressAffectAgeBradykinesiaCandidate Disease GeneCell LineCell physiologyClinicalClinical ResearchClustered Regularly Interspaced Short Palindromic RepeatsCytoskeletonDiseaseEndoplasmic ReticulumEndosomesEngineered GeneEngineeringEtiologyFamilyGene ExpressionGenesGeneticGoalsGuanosine Triphosphate PhosphohydrolasesHumanHuman EngineeringHyperactivityIn VitroIndividualInduced pluripotent stem cell derived neuronsIntronsLRRK2 geneLewy Body DiseaseLewy body pathologyMembraneMitochondriaModelingModificationMolecularMorphologyMutationNerve DegenerationNeuritesNeurodegenerative DisordersNeuronsOnset of illnessOutcomeParkinson DiseaseParkinsonian DisordersPathogenesisPathologyPathway interactionsPatternPenetrancePhenotypePhosphorylationPhosphotransferasesPoint MutationPost-Translational Protein ProcessingProteinsResearchRiskRisk FactorsRoleSignal TransductionSingle Nucleotide PolymorphismSiteSymptomsSystemTestingTremorVariantalpha synucleinbasecoronin proteindisorder riskgene repressiongenetic risk factorgenetic testinggenetic variantgenome wide association studygenome-widein vitro Modelinduced pluripotent stem cellinduced pluripotent stem cell technologyknock-downloss of functionmitochondrial dysfunctionnerve stem cellneuropathologynoveloverexpressionpolygenic risk scoreposture instabilityrac1 GTP-Binding Proteinrisk varianttau Proteinstau expressiontherapeutic targettool
项目摘要
Parkinson’s Disease (PD) is a progressive neurodegenerative disease and is commonly characterized by tremor,
bradykinesia, stiffness, and postural instability. PD is estimated to be prevalent in 572 individuals per 100,000
individuals over 45, with an estimated 1.2 million cases in the US by 2030. While the exact cause of PD is not
known, a multitude of factors, including environmental and genetic factors have been identified and attributed to
increase the risk of developing PD. Many genetic forms of PD have been described in the last two decades in
addition to risk genes identified through candidate gene studies and genome-wide association studies (GWAS)
and over 90 independent genome-wide significant risk signals have been described. Such genetic forms allow
for the identification of mechanisms and pathways, and they could become therapeutic targets when validated.
The most common genetic forms of PD are mutations in the LRRK2 gene. LRRK2 is a multidomain protein with
both a GTPase domain and a kinase enzymatic domain. While LRRK2-PD is thought to present with a more
homogenous clinical and neuropathological pattern due to its single genetic cause, there are still striking
differences among LRRK2-PD, which pose several critical questions: why is it that not all LRRK2 variant carriers
develop PD (reduced penetrance)? Why can the age at disease onset be quite variable even within families
(variable age at onset)? Why does the neuropathology vary between LRRK2-PD cases, even in cases with the
same allelic variant (pleomorphic pathology)?
In this project, we aim to develop a system to test genetic modifiers in the context of LRRK2-PD and we
nominated a variant in the CORO1C gene, which was recently found in the first LRRK2 GWAS study. We will
combine advanced Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and induced
pluripotent stem cell (iPSC) technologies to edit a single point mutation and modulate gene expression of
CORO1C. This will allow us to generate an isogenic panel of human iPSC lines, in which we edited a single point
mutation and activate or inhibit CORO1C expression to probe for gain-or loss-of function phenotypes in healthy
and LRRK2 human iPSC neurons. Our aims are: Aim 1: To derive such human CRISPR engineered iPSC tools;
Aim 2: To assess to what extent CORO1C affects cellular function, and alpha-synuclein or tau expression and
post translational modifications; Aim 3: To determine to what extent CORO1C has an impact on LRRK2 function.
The outcomes will have a critical impact on defining new mechanisms related to neurodegeneration and
functionally validate CORO1C as a new disease target for PD nominated by clinical research-based genome-
wide association. This in vitro approach of up/down-regulation of genes from their endogenous loci combined
with specific disease-associated SNP gene editing and could serve as a testbed to unravel the functional
consequences of genetic risk factors as modifiers in PD and related Lewy body pathologies.
帕金森病(PD)是一种进行性神经退行性疾病,通常以震颤为特征,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Birgitt Schuele其他文献
Birgitt Schuele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Birgitt Schuele', 18)}}的其他基金
Developing a cell-on-chip platform to study oligodendrocyte-neuron interactions in plasticity and neurodegeneration
开发芯片上细胞平台来研究可塑性和神经变性中少突胶质细胞-神经元的相互作用
- 批准号:
10753372 - 财政年份:2023
- 资助金额:
$ 23.61万 - 项目类别:
Impact of actin binding protein Coronin 1C in the pathogenesis of Parkinson's disease
肌动蛋白结合蛋白 Coronin 1C 在帕金森病发病机制中的影响
- 批准号:
10577415 - 财政年份:2022
- 资助金额:
$ 23.61万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 23.61万 - 项目类别:
Research Grant














{{item.name}}会员




