The mitochondrial Ca2+ uniporter in the regulation of neural activity and susceptibility to seizures
线粒体 Ca2 单向转运蛋白在神经活动和癫痫易感性调节中的作用
基本信息
- 批准号:10392188
- 负责人:
- 金额:$ 44.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAnticonvulsantsBehavioralBioenergeticsCause of DeathCell DeathChronicCognitive deficitsComplexDataDevelopmentElectroconvulsive ShockElectrophysiology (science)EpilepsyFluorescent ProbesFoundationsFutureGenerationsGenetic EngineeringGlutamatesHippocampus (Brain)Impaired cognitionIn VitroInner mitochondrial membraneInterventionIntractable EpilepsyKnock-outKnockout MiceLeadLightMitochondriaModelingMorbidity - disease rateMusNeuronsPatientsPersonsPharmacologic SubstancePilocarpinePilot ProjectsPlayPredispositionProcessPropertyRegulationRoleSeizuresSensorySignal TransductionSliceSynapsesSynaptic TransmissionTemporal Lobe EpilepsyTestingToxic effectTranslational ResearchWorkbehavior testcalmodulin-dependent protein kinase IIexcitatory neuronexcitotoxicityhigh riskin vivoinsightmortalitymotor deficitmouse modelnervous system disorderneural networkneuron lossneuronal excitabilityneuroregulationneurotoxicitynoveloptogeneticspatch clamppatient populationpresynapticpreventpsychiatric comorbidityrelating to nervous systemsudden unexpected death in epilepsysynaptic functiontherapeutic targettransmission processuptake
项目摘要
Project Summary/Abstract
Epilepsy is a common neurological disorder that affects approximately 70 mln people. For many patients,
epilepsy can be controlled through pharmaceutical therapies; however, approximately 30% of patients develop
refractory epilepsy that cannot be controlled with current pharmaceutical interventions. Refractory epilepsy is
associated with a high risk for sudden unexpected death in epilepsy (SUDEP), which is the leading cause of
death in this patient population. In addition, uncontrolled epilepsy and frequent seizures are associated with
progressive cognitive decline, as well as significant behavioral and psychiatric comorbidities. Thus, it is of
paramount importance to identify novel critical therapeutic targets for patients with refractory epilepsy. The main
objective of this proposal is to establish the role of the mitochondrial Ca2+ uniporter (MCU) in regulating synaptic
function, neural network activity and seizure susceptibility. MCU is the core component of the mitochondrial Ca2+
uptake complex and is involved in the regulation of Ca2+ signaling, bioenergetics and cell death. Our focus on
MCU is inspired by several novel observations we made during our pilot studies. First, we found that MCU
knockout (KO) produces robust anticonvulsant effects both in vivo and in vitro. Second, deleting MCU specifically
in GABAergic, but not in glutamatergic, neurons was sufficient to produce an anticonvulsant effect. Third, MCU
deletion enhanced GABAergic synaptic transmission, but did not alter glutamatergic transmission or intrinsic
neuronal excitability. Fourth, MCU deletion protected neurons from glutamate-induced Ca2+ deregulation and
toxicity. The latter is important because excitotoxicity contributes significantly to neuronal damage in epilepsy.
Collectively, these data suggest that inhibiting MCU would provide a dual benefit in the context of epilepsy, first
by increasing seizure threshold, and second, by protecting neurons from excitotoxicity associated with seizures.
We hypothesize that MCU plays an important role in regulating GABAergic synaptic transmission and neural
activity, and that MCU deletion produces anticonvulsant effects by enhancing GABAergic synaptic transmission
and preventing neural network hyperexcitability. We also hypothesize that MCU deletion provides protection
from neurotoxicity associated with seizures. These central hypotheses will be tested in 3 specific aims. Aim 1
will establish the roles of GABAergic and glutamatergic neurons in the anticonvulsant effect of MCU deletion.
Aim 2 will determine the role of MCU at inhibitory and excitatory central synapses. Aim 3 will determine the role
of MCU in epilepsy-induced neuronal toxicity. The proposed studies will provide mechanistic insight into a
previously unrecognized role of mitochondrial Ca2+ transport in regulating the activities of synaptic networks and
susceptibility to hyperexcitability and seizures, and could lead to development of new strategies targeting
mitochondrial Ca2+ transport and MCU for the treatment of epilepsy as well as other neurological disorders
associated with aberrant neural activity.
项目总结/摘要
癫痫是一种常见的神经系统疾病,影响大约7000万人。对于许多患者来说,
癫痫可以通过药物治疗来控制;然而,大约30%的患者
难治性癫痫,目前的药物干预无法控制。难治性癫痫是
与癫痫猝死(SUDEP)的高风险相关,这是癫痫的主要原因。
在这个病人群体中。此外,不受控制的癫痫和频繁发作与
进行性认知能力下降,以及显著的行为和精神共病。因此,
这对于确定难治性癫痫患者的新的关键治疗靶点至关重要。主要
本研究的目的是确定线粒体Ca 2+单向转运体(MCU)在调节突触的作用,
功能、神经网络活动和癫痫易感性。MCU是线粒体Ca 2+的核心成分
它是钙摄取复合物的一部分,参与钙信号传导、生物能量学和细胞死亡的调节。我们专注于
MCU的灵感来自于我们在试点研究中所做的几项新观察。首先,我们发现MCU
敲除(KO)在体内和体外均产生强的抗惊厥作用。第二,具体删除MCU
GABA能神经元足以产生抗惊厥作用,而谷氨酸能神经元则不然。三、MCU
缺失增强GABA能突触传递,但不改变GABA能传递或内源性
神经元兴奋性第四,MCU缺失保护神经元免受谷氨酸诱导的Ca 2+失调,
毒性后者是重要的,因为兴奋性毒性有助于显着的癫痫神经元损伤。
总的来说,这些数据表明,抑制MCU将在癫痫的背景下提供双重益处,首先,
通过增加癫痫发作阈值,第二,通过保护神经元免受与癫痫发作相关的兴奋性毒性。
我们推测,MCU在调节GABA能突触传递和神经元突触传递中起重要作用。
活性,并且MCU缺失通过增强GABA能突触传递产生抗惊厥作用
并防止神经网络过度兴奋。我们还假设MCU删除提供了保护,
与癫痫有关的神经毒性这些中心假设将在3个具体目标中进行检验。要求1
将确定GABA能和谷氨酸能神经元在MCU缺失的抗惊厥作用中的作用。
目的2将确定MCU在抑制性和兴奋性中枢突触中的作用。目标3将决定作用
MCU在癫痫诱导的神经元毒性中的作用。拟议的研究将提供一个机制的见解,
以前未认识到线粒体Ca 2+转运在调节突触网络活动中的作用,
对过度兴奋和癫痫发作的敏感性,并可能导致新的策略的发展,
线粒体Ca 2+转运和MCU用于治疗癫痫以及其他神经系统疾病
与异常神经活动有关
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuriy M Usachev其他文献
Yuriy M Usachev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuriy M Usachev', 18)}}的其他基金
The mitochondrial Ca2+ uniporter in the regulation of neural activity and susceptibility to seizures
线粒体 Ca2 单向转运蛋白在神经活动和癫痫易感性调节中的作用
- 批准号:
10534197 - 财政年份:2021
- 资助金额:
$ 44.92万 - 项目类别:
The Role of the Complement System in Spinal Mechanisms of Chronic Pain
补体系统在慢性疼痛脊柱机制中的作用
- 批准号:
10408148 - 财政年份:2019
- 资助金额:
$ 44.92万 - 项目类别:
The Role of the Complement System in Spinal Mechanisms of Chronic Pain
补体系统在慢性疼痛脊柱机制中的作用
- 批准号:
10165843 - 财政年份:2019
- 资助金额:
$ 44.92万 - 项目类别:
The Role of the Complement System in Spinal Mechanisms of Chronic Pain
补体系统在慢性疼痛脊柱机制中的作用
- 批准号:
10643985 - 财政年份:2019
- 资助金额:
$ 44.92万 - 项目类别:
The Role of the Complement System in Spinal Mechanisms of Chronic Pain
补体系统在慢性疼痛脊柱机制中的作用
- 批准号:
10572087 - 财政年份:2019
- 资助金额:
$ 44.92万 - 项目类别:
Molecular Mechanisms and Functions of Mitochondrial Ca2+ transport in Neurons
神经元线粒体 Ca2+ 转运的分子机制和功能
- 批准号:
9240345 - 财政年份:2016
- 资助金额:
$ 44.92万 - 项目类别:
Molecular Mechanisms and Functions of Mitochondrial Ca2+ transport in Neurons
神经元线粒体 Ca2+ 转运的分子机制和功能
- 批准号:
9752673 - 财政年份:2016
- 资助金额:
$ 44.92万 - 项目类别:
The Role of Ca-dependent Transcription Factor NFAT in Pain Control
Ca 依赖性转录因子 NFAT 在疼痛控制中的作用
- 批准号:
8943179 - 财政年份:2015
- 资助金额:
$ 44.92万 - 项目类别:
The Role of Ca-dependent Transcription Factor NFAT in Pain Control
Ca 依赖性转录因子 NFAT 在疼痛控制中的作用
- 批准号:
9064863 - 财政年份:2015
- 资助金额:
$ 44.92万 - 项目类别:
Mitochondria fission and fusion (MFF)-dependent mechanisms in neuronal toxicity
神经元毒性中线粒体裂变和融合(MFF)依赖性机制
- 批准号:
8673589 - 财政年份:2014
- 资助金额:
$ 44.92万 - 项目类别:
相似海外基金
Novel pediatric anticonvulsants for nerve agents
用于神经毒剂的新型儿科抗惊厥药
- 批准号:
10004277 - 财政年份:2020
- 资助金额:
$ 44.92万 - 项目类别:
Novel pediatric anticonvulsants for nerve agents
用于神经毒剂的新型儿科抗惊厥药
- 批准号:
10475298 - 财政年份:2020
- 资助金额:
$ 44.92万 - 项目类别:
Novel Water-Soluble Adjunct Anticonvulsants for Nerve Agents
用于神经毒剂的新型水溶性辅助抗惊厥药
- 批准号:
10013749 - 财政年份:2020
- 资助金额:
$ 44.92万 - 项目类别:
Novel pediatric anticonvulsants for nerve agents
用于神经毒剂的新型儿科抗惊厥药
- 批准号:
10693904 - 财政年份:2020
- 资助金额:
$ 44.92万 - 项目类别:
Study on how anticonvulsants affect car driving
抗惊厥药如何影响汽车驾驶的研究
- 批准号:
20K17977 - 财政年份:2020
- 资助金额:
$ 44.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel Water-Soluble Adjunct Anticonvulsants for Nerve Agents
用于神经毒剂的新型水溶性辅助抗惊厥药
- 批准号:
10266034 - 财政年份:2020
- 资助金额:
$ 44.92万 - 项目类别:
Novel Water-Soluble Adjunct Anticonvulsants for Nerve Agents
用于神经毒剂的新型水溶性辅助抗惊厥药
- 批准号:
10475109 - 财政年份:2020
- 资助金额:
$ 44.92万 - 项目类别:
Novel pediatric anticonvulsants for nerve agents
用于神经毒剂的新型儿科抗惊厥药
- 批准号:
10248384 - 财政年份:2020
- 资助金额:
$ 44.92万 - 项目类别:
Prevention of neuropathic pain by antidepressants and anticonvulsants: in vivo patch-clamp analysis
抗抑郁药和抗惊厥药预防神经性疼痛:体内膜片钳分析
- 批准号:
24592355 - 财政年份:2012
- 资助金额:
$ 44.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Anticonvulsants, ischemic seizures and regeneration in the immature brain
抗惊厥药、缺血性癫痫发作和未成熟大脑的再生
- 批准号:
8492175 - 财政年份:2009
- 资助金额:
$ 44.92万 - 项目类别:














{{item.name}}会员




