Molecular Mechanisms and Functions of Mitochondrial Ca2+ transport in Neurons
神经元线粒体 Ca2+ 转运的分子机制和功能
基本信息
- 批准号:9240345
- 负责人:
- 金额:$ 39.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:ATP Synthesis PathwayAction PotentialsAgonistAlzheimer&aposs DiseaseBackBioenergeticsBuffersCellular Metabolic ProcessCessation of lifeChemicalsCytosolDataDevelopmentElectrophysiology (science)Gene ExpressionGeneticGlutamatesHippocampus (Brain)HomeostasisImageInner mitochondrial membraneIschemiaIschemic StrokeKnock-outKnockout MiceKnowledgeLeadLifeMediatingMembrane PotentialsMiddle Cerebral Artery OcclusionMitochondriaMitochondrial MatrixModelingMolecularMonitorMusNeuraxisNeurodegenerative DisordersNeuronsOxidoreductaseParkinson DiseasePeripheralPlayProductionRegulationRoleSensoryShapesSignal TransductionSpinal GangliaStrokeSynapsesSynaptic TransmissionTRPV1 geneTestingToxic effectWorkbaseexcitotoxicityin vivointerdisciplinary approachkillingsmeetingsmitochondrial membranemouse modelnervous system disorderneuron lossneuronal survivalneuroprotectionneurotoxicityneurotransmissionnew therapeutic targetnovelnovel therapeutic interventionpatch clamppresynapticresearch studyresponsesensorstroke treatmentuptake
项目摘要
Mitochondria play a central role in cell metabolism and control multiple aspects of neuronal signaling. By
efficiently buffering Ca2+ influx during neuronal excitation and slowly releasing Ca2+ back into the cytosol,
mitochondria shape [Ca2+]i transients and regulate Ca2+-dependent neuronal functions, such as excitability,
synaptic transmission and gene expression. Ca2+ rise in the mitochondrial matrix stimulates Ca2+-dependent
dehydrogenases and boosts ATP production to meet the increase in energy demand during excitation.
However, mitochondrial overload with Ca2+ can kill neurons, and mitochondrial Ca2+ dysregulation is implicated
in neuronal damage during stroke and in neurodegenerative disorders, such as Alzheimer's and Parkinson's
diseases. Despite the importance of mitochondrial Ca2+ transport to neuronal life and death, the molecules that
mediate mitochondrial Ca2+ uptake and release in neurons are not known. This knowledge gap presents a
major obstacle in our progress toward understanding and therapeutically correcting mitochondrial functions in
neurons. The main objectives of this proposal are to identify molecules that mediate mitochondrial Ca2+ uptake
in peripheral and central neurons, and to establish their roles in neuronal Ca2+ signaling, ATP synthesis,
synaptic transmission and excitotoxicity. Our preliminary studies indicate that two novel molecules, MCU
(CCDC109A) and MCUb (CCDC109B), are broadly expressed in the peripheral and central nervous systems,
and that MCU is required for mitochondrial Ca2+ uptake in neurons whereas MCUb inhibits this Ca2+ transport
mechanism. Moreover, our pilot data using MCU KO mice showed that MCU loss dramatically, but not
completely, reduced mitochondrial Ca2+ uptake, altered Ca2+ signaling and mitochondrial function and provided
remarkable protection against glutamate-induced toxicity. Our central hypothesis is that MCU and MCUb play
important but opposite roles in the regulation of mitochondrial Ca2+ uptake in neurons, bioenergetics, Ca2+
signaling and synaptic transmission, and that knockout of MCU, but not of MCUb, protects neurons from
excitotoxicity and reduces neuronal damage in ischemic stroke. We will employ a multidisciplinary approach
involving genetic Ca2+ and ATP sensors, patch-clamp recording, knockout mice and a mouse model of
ischemic stroke to test this hypothesis in three specific aims. Aim 1 will establish the roles of MCU and MCUb
in mitochondrial Ca2+ transport and Ca2+ signaling in central and peripheral neurons. Aim 2 will examine the
impact of MCU and MCUb on presynaptic Ca2+ signaling and synaptic transmission. Aim 3 will establish the
roles of MCU and MCUb in excitotoxicity and ischemic stroke. We anticipate that this work will be
transformative because it will establish the molecular basis for genetic and pharmacological manipulation of
mitochondrial Ca2+ transport in neurons, and may lead to the development of new therapeutics that target
mitochondrial Ca2+ uniporters for treating stroke and other neurological disorders associated with excitotoxicity.
线粒体在细胞新陈代谢中起着核心作用,控制着神经元信号的多个方面。通过
有效地缓冲神经元兴奋过程中的钙离子内流,并缓慢地将钙离子释放回胞浆,
线粒体塑造[Ca~(2+)]i瞬变并调节钙依赖的神经元功能,如兴奋性,
突触传递和基因表达。线粒体基质中钙离子的升高刺激钙依赖
脱氢酶并促进ATP的产生,以满足兴奋过程中增加的能量需求。
然而,线粒体钙超载可导致神经元死亡,并与线粒体钙调节失调有关。
在中风和神经退行性疾病,如阿尔茨海默氏症和帕金森氏症中,神经元损伤
疾病。尽管线粒体钙离子转运对神经元的生死很重要,但参与线粒体钙转运的分子
神经元中线粒体钙摄取和释放的中介作用尚不清楚。这一知识差距呈现出一种
我们在理解和治疗纠正线粒体功能方面取得进展的主要障碍
神经元。这项提议的主要目标是确定介导线粒体钙摄取的分子。
在外周和中枢神经元,并确定它们在神经元钙信号转导,ATP合成,
突触传递和兴奋性毒性。我们的初步研究表明,两个新的分子MCU
(CCDC109A)和MCUb(CCDC109B)广泛表达于外周和中枢神经系统,
而MCU是神经元摄取线粒体钙所必需的,而MCUb则抑制这种钙转运
机制。此外,我们使用MCU KO小鼠的试点数据显示,MCU损失显著,但没有
完全减少线粒体钙摄取,改变钙信号和线粒体功能,并提供
对谷氨酸诱导的毒性有显著的保护作用。我们的中心假设是MCU和MCUb
在神经元线粒体钙摄取调节中的重要但相反的作用,生物能量学,钙
信号和突触传递,以及MCU而不是MCUb基因敲除,保护神经元免受
兴奋性毒性和减少缺血性中风的神经元损伤。我们将采用多学科的方法。
涉及遗传钙和三磷酸腺苷感受器、膜片钳记录、基因敲除小鼠和
在三个特定的目标上检验这一假说。目标1将确定MCU和MCUb的角色
中枢神经元和外周神经元的线粒体钙转运和钙信号转导。Aim 2将研究
MCU和MCUb对突触前钙信号和突触传递的影响。目标3将建立
MCU和MCUb在兴奋性毒性和缺血性卒中中的作用。我们预计这项工作将是
具有变革性,因为它将为遗传和药物操作奠定分子基础
线粒体钙离子在神经元中的运输,并可能导致新的靶向治疗药物的开发
线粒体钙离子转运体用于治疗中风和其他与兴奋性毒性相关的神经疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuriy M Usachev其他文献
Yuriy M Usachev的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuriy M Usachev', 18)}}的其他基金
The mitochondrial Ca2+ uniporter in the regulation of neural activity and susceptibility to seizures
线粒体 Ca2 单向转运蛋白在神经活动和癫痫易感性调节中的作用
- 批准号:
10534197 - 财政年份:2021
- 资助金额:
$ 39.2万 - 项目类别:
The mitochondrial Ca2+ uniporter in the regulation of neural activity and susceptibility to seizures
线粒体 Ca2 单向转运蛋白在神经活动和癫痫易感性调节中的作用
- 批准号:
10392188 - 财政年份:2021
- 资助金额:
$ 39.2万 - 项目类别:
The Role of the Complement System in Spinal Mechanisms of Chronic Pain
补体系统在慢性疼痛脊柱机制中的作用
- 批准号:
10165843 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
The Role of the Complement System in Spinal Mechanisms of Chronic Pain
补体系统在慢性疼痛脊柱机制中的作用
- 批准号:
10408148 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
The Role of the Complement System in Spinal Mechanisms of Chronic Pain
补体系统在慢性疼痛脊柱机制中的作用
- 批准号:
10643985 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
The Role of the Complement System in Spinal Mechanisms of Chronic Pain
补体系统在慢性疼痛脊柱机制中的作用
- 批准号:
10572087 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
Molecular Mechanisms and Functions of Mitochondrial Ca2+ transport in Neurons
神经元线粒体 Ca2+ 转运的分子机制和功能
- 批准号:
9752673 - 财政年份:2016
- 资助金额:
$ 39.2万 - 项目类别:
The Role of Ca-dependent Transcription Factor NFAT in Pain Control
Ca 依赖性转录因子 NFAT 在疼痛控制中的作用
- 批准号:
8943179 - 财政年份:2015
- 资助金额:
$ 39.2万 - 项目类别:
The Role of Ca-dependent Transcription Factor NFAT in Pain Control
Ca 依赖性转录因子 NFAT 在疼痛控制中的作用
- 批准号:
9064863 - 财政年份:2015
- 资助金额:
$ 39.2万 - 项目类别:
Mitochondria fission and fusion (MFF)-dependent mechanisms in neuronal toxicity
神经元毒性中线粒体裂变和融合(MFF)依赖性机制
- 批准号:
8673589 - 财政年份:2014
- 资助金额:
$ 39.2万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 39.2万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 39.2万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 39.2万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 39.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 39.2万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 39.2万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 39.2万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 39.2万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 39.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 39.2万 - 项目类别:














{{item.name}}会员




