Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
基本信息
- 批准号:10632143
- 负责人:
- 金额:$ 73.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATP Synthesis PathwayAdenine Nucleotide TranslocaseAgeApoptosisAttenuatedBiologyCardiacCardiac MyocytesCell DeathCessation of lifeCollaborationsComplexCytoplasmDataDepressed moodDiseaseElectron TransportEngineeringEventExhibitsFunctional disorderGene DeletionGeneticHeartHeart failureHumanIndividualInfarctionInvestigationKnockout MiceLeftMammalian CellMediatingMetabolicMitochondriaMitochondrial Proton-Translocating ATPasesModelingMusMyocardial IschemiaMyocardial dysfunctionNecrosisPathway interactionsPatientsPharmaceutical PreparationsProtein Complex SubunitRadioisotopesRegulationReperfusion TherapyRoleSpecimenSurgeonTestingUncertaintyVentricularWild Type Mousedefined contributionexperimental studygain of functionheart functionin vivoinhibitorloss of functionmitochondrial permeability transition poremortalitymouse modelnovelpressureresponse
项目摘要
The mitochondrial ATP synthase is a multi-subunit complex that catalyzes the synthesis of >90% of ATP in
mammalian cells. The ATP synthase is also hypothesized to function as the mitochondrial permeability transition
pore (mPTP), a major trigger for necrotic cell death. Except for short-term drug inhibitor experiments, the
functions of the ATP synthase have never been assessed in the heart in vivo. We have created the first mouse
models deficient in the entire ATP synthase complex in cardiomyocytes. To accomplish this, we individually
deleted at 5 weeks of age ATP5L and ATP5J, ATP synthase subunits required for complex assembly. Thus far,
we have analyzed the ATP5L KO mice. Because the half-lives of most mitochondrial ATP synthase subunits
exceed 35 days in cardiomyocytes, the abundance of the complex decreased gradually with 15% remaining at
12 weeks post-deletion. KO mice uniformly developed heart failure (HF) with reduced systolic function and died
between 12-16 weeks post-deletion. Analysis of cardiac mitochondria confirmed reduced ATP synthesis rates
as expected. Unexpectedly, however, ATP concentrations in whole heart lysates, as well as in cytoplasmic and
mitochondrial fractions, were elevated in KO, compared with control, mice. Parallel investigations into the role of
the ATP synthase as the mPTP revealed that, rather than inhibiting Ca2+-induced mPTP opening, deficiency of
the ATP synthase sensitized this event. Moreover, mice with cardiomyocyte-specific deficiency of the ATP
synthase exhibited larger – not smaller – infarcts following myocardial ischemia/reperfusion in vivo. Finally, we
observed that ATP synthase levels and activity in mitochondria decrease during pressure overload-induced HF
in wild type mice. These results suggest: (a) Loss of the mitochondrial ATP synthase activates marked
metabolic/energetic responses and unleashes previously unrecognized mechanisms that promote lethal HF.
Regarding the latter, our preliminary studies implicate Complex II to I reverse electron transport (RET) promoting
ROS-induced cardiomyocyte apoptosis. (b) Our studies cast doubt that the ATP synthase also functions as the
mPTP and rather suggest that it is a negative regulator. (c) Deficient ATP synthase function may contribute to
acquired forms of HF. We propose studies to understand the mechanistic basis of our observations and to assess
the role deficient mitochondrial ATP synthase function in human HF. Aim 1. To define metabolic/energetic
pathways that are activated and mechanisms that contribute to HF in mice with cardiomyocyte-specific deficiency
of the mitochondrial ATP synthase. Aim 2. To test definitively whether the mitochondrial ATP synthase is the
mPTP. Aim 3. To assess the role of deficient mitochondrial ATP synthase abundance/function in pressure
overload-induced HF in mice and in human HF. These studies break new ground in investigating functions of
the mitochondrial ATP synthase in cardiomyocytes in vivo. Deliverables include the assessment of RET as a
novel HF mechanism, a definitive determination of the role of the ATP synthase as the mPTP, and a delineation
of the role deficient ATP synthase function in human HF.
线粒体ATP合酶是一种多亚基复合物,催化线粒体中>90%的ATP的合成。
哺乳动物细胞ATP合酶也被假设为线粒体通透性转换的功能
孔(mPTP),坏死细胞死亡的主要触发因素。除了短期药物抑制剂实验外,
ATP合酶的功能从未在体内心脏中进行过评估。我们创造了第一只老鼠
心肌细胞中整个ATP合酶复合物缺乏的模型。为了做到这一点,我们每个人
在5周龄时缺失ATP 5L和ATP 5 J,ATP合酶亚基是复合物组装所需的。到目前为止,
我们分析了ATP 5L KO小鼠。因为大多数线粒体ATP合酶亚基的半衰期
在心肌细胞中,超过35天,复合物的丰度逐渐下降,
删除后12周。KO小鼠一致发生心力衰竭(HF),收缩功能降低并死亡
在删除后12-16周之间。心肌线粒体分析证实ATP合成速率降低
果然然而,出乎意料的是,整个心脏裂解物中的ATP浓度,以及细胞质和
与对照组相比,KO小鼠的线粒体组分升高。同时调查
ATP合酶作为mPTP显示,缺乏ATP合酶并不能抑制Ca ~(2+)诱导的mPTP开放,
ATP合成酶使这一事件敏感。此外,心肌细胞特异性ATP缺乏的小鼠
合成酶在体内心肌缺血/再灌注后表现出更大而不是更小的梗死。最后我们
观察到在压力超负荷诱导的HF期间线粒体中ATP合酶水平和活性降低,
在野生型小鼠中。这些结果表明:(a)线粒体ATP合酶的丧失激活了显著的
代谢/能量反应,并释放以前未被认识到的促进致命HF的机制。
关于后者,我们的初步研究暗示复合物II至I的反向电子传递(RET)促进了
ROS诱导的心肌细胞凋亡。(b)我们的研究怀疑ATP合酶也起着
mPTP,而不是建议它是一个负调节器。(c)ATP合成酶功能缺陷可能有助于
获得性HF。我们建议进行研究,以了解我们观察的机械基础,并评估
线粒体ATP合酶功能缺陷在人HF中的作用。目标1。定义代谢/能量
心肌细胞特异性缺陷小鼠中激活的通路和导致HF的机制
线粒体ATP合酶的基因目标2.为了明确地测试线粒体ATP合酶是否是
mPTP。目标3.评估线粒体ATP合酶丰度/功能缺陷在压力中的作用
在小鼠和人HF中的超负荷诱导的HF。这些研究在研究细胞的功能方面开辟了新的领域。
心肌细胞线粒体ATP合成酶的研究。可评估项目包括可再生能源技术评估,
新的HF机制,ATP合酶作为mPTP的作用的确定性测定,以及
ATP合酶功能缺陷的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard N Kitsis其他文献
Eat your heart out
羡慕死你。
- DOI:
10.1038/nm0507-539 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:50.000
- 作者:
Richard N Kitsis;Chang-Fu Peng;Ana Maria Cuervo - 通讯作者:
Ana Maria Cuervo
Richard N Kitsis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard N Kitsis', 18)}}的其他基金
Caspase-9 as a nodal point connecting necrotic and apoptotic cell death in myocardial infarction
Caspase-9作为连接心肌梗死细胞坏死和凋亡的节点
- 批准号:
10666668 - 财政年份:2022
- 资助金额:
$ 73.14万 - 项目类别:
Caspase-9 as a nodal point connecting necrotic and apoptotic cell death in myocardial infarction
Caspase-9 作为连接心肌梗死细胞坏死和凋亡的节点
- 批准号:
10504387 - 财政年份:2022
- 资助金额:
$ 73.14万 - 项目类别:
Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
- 批准号:
10812556 - 财政年份:2022
- 资助金额:
$ 73.14万 - 项目类别:
Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
- 批准号:
10758687 - 财政年份:2022
- 资助金额:
$ 73.14万 - 项目类别:
Mitochondrial ATP Synthase in Cardiac Biology and Disease
线粒体 ATP 合酶在心脏生物学和疾病中的作用
- 批准号:
10446745 - 财政年份:2022
- 资助金额:
$ 73.14万 - 项目类别:
Modulation of Mitofusin Activity to Treat Heart Disease
调节丝裂霉素活性治疗心脏病
- 批准号:
10280485 - 财政年份:2021
- 资助金额:
$ 73.14万 - 项目类别:
Modulation of Mitofusin Activity to Treat Heart Disease
调节丝裂霉素活性治疗心脏病
- 批准号:
10458699 - 财政年份:2021
- 资助金额:
$ 73.14万 - 项目类别:
Modulation of Mitofusin Activity to Treat Heart Disease
调节丝裂霉素活性治疗心脏病
- 批准号:
10655447 - 财政年份:2021
- 资助金额:
$ 73.14万 - 项目类别:
相似海外基金
The Role of Adenine Nucleotide Translocase in Mitochondrial Dysfunction Associated Senescence in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在慢性阻塞性肺病(COPD)线粒体功能相关衰老中的作用
- 批准号:
10633608 - 财政年份:2023
- 资助金额:
$ 73.14万 - 项目类别:
Characterization of Adenine Nucleotide Translocase (ANT) and Actin-Interacting Protein 1 (AIP1) as Protectors Against Cigarette Smoke
腺嘌呤核苷酸转位酶 (ANT) 和肌动蛋白相互作用蛋白 1 (AIP1) 作为香烟烟雾保护剂的表征
- 批准号:
9917578 - 财政年份:2019
- 资助金额:
$ 73.14万 - 项目类别:
The Role of Adenine Nucleotide Translocase in the Protection of Airway Epithelial Cells in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在保护慢性阻塞性肺疾病 (COPD) 气道上皮细胞中的作用
- 批准号:
10459434 - 财政年份:2018
- 资助金额:
$ 73.14万 - 项目类别:
The Role of Adenine Nucleotide Translocase in the Protection of Airway Epithelial Cells in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在保护慢性阻塞性肺疾病 (COPD) 气道上皮细胞中的作用
- 批准号:
10226893 - 财政年份:2018
- 资助金额:
$ 73.14万 - 项目类别:
The Role of Adenine Nucleotide Translocase in the Protection of Airway Epithelial Cells in Chronic Obstructive Pulmonary Disease (COPD)
腺嘌呤核苷酸转位酶在保护慢性阻塞性肺疾病 (COPD) 气道上皮细胞中的作用
- 批准号:
9764469 - 财政年份:2018
- 资助金额:
$ 73.14万 - 项目类别:
HNE damage of adenine nucleotide translocase in ethanol-mediated neuron apoptosis
乙醇介导的神经元凋亡中腺嘌呤核苷酸转位酶的 HNE 损伤
- 批准号:
7934507 - 财政年份:2009
- 资助金额:
$ 73.14万 - 项目类别:
Origin of mitochondrial proton leak: comparative investigation of Adenine Nucleotide, Translocase, Phosphate and Aspartat/Glutamate Carriers
线粒体质子泄漏的起源:腺嘌呤核苷酸、易位酶、磷酸盐和天冬氨酸/谷氨酸载体的比较研究
- 批准号:
40116377 - 财政年份:2007
- 资助金额:
$ 73.14万 - 项目类别:
Research Grants