Molecular Photoacoustic Imaging for Diagnostics and Therapy Monitoring
用于诊断和治疗监测的分子光声成像
基本信息
- 批准号:10631940
- 负责人:
- 金额:$ 60.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAddressAlgorithmsAnatomyAnimal Disease ModelsAnimal ModelAnimalsAntibodiesBindingBiochemicalBiodistributionBloodCancer CenterCell Culture TechniquesCholesterolClinicalCommercial gradeCommunitiesComplementContrast MediaCoupledDataDetectionDevelopmentDiagnostic ImagingDiseaseDoctor of MedicineDrug Delivery SystemsDrug KineticsDrug TargetingDyesEncapsulatedEpidermal Growth Factor ReceptorEvaluationFoundationsFunctional ImagingFutureGenerationsGoalsHemoglobinImageImaging DeviceImaging TechniquesImaging technologyIndocyanine GreenLabelLettersLightingLiposomesMalignant neoplasm of ovaryMediatingMedicalMedical ResearchModelingMolecularMolecular TargetMonitorMorphologyNeoplasmsOpticsOutcomeOxygenPathologic ProcessesPathologyPenetrationPhospholipidsPhysiologic pulsePhysiologicalPositioning AttributeProcessProductionPropertyProtocols documentationQuality ControlReproducibilityResearch PersonnelResearch ProposalsResolutionSafetySensitivity and SpecificitySignal TransductionSilicon DioxideSpecificitySystemTechnologyTherapeuticTissuesToxic effectTranslational ResearchTranslationsValidationVisualizationabsorptionbioluminescence imagingbiomarker evaluationcancer therapycellular imagingclinical translationcontrast imagingdetection limitdrug discoveryfundamental researchimage processingimaging approachimaging capabilitiesimaging modalityimaging platformimaging systemimprovedin vivoindustry partnerinterestlarge scale productionmillimetermolecular imagingmolecular markermonomermouse modelnanoGoldnanorodneoplastic cellnoveloptical imagingpersonalized medicinepharmacologicphotoacoustic imagingpre-clinical researchpreclinical imagingpreclinical studypreventquantitative imagingscale uptomographytooltreatment response
项目摘要
PROJECT SUMMARY
Small-animal models are powerful discovery tools in medical research, but sacrificing prevents long-term, in vivo
observation of natural or pathological processes. As such, there is a need for a morphologic, functional,
cellular/molecular, and quantitative imaging technique capable of longitudinal visualization of biochemical and
pharmacological processes in small-animal disease models. Unfortunately, current molecular optical imaging
approaches tend to present an undesirable trade-off between imaging depth and resolution. Non-invasive
photoacoustic imaging (PAI), which is capable of simultaneous anatomical, functional, and molecular
visualization of pathology with high contrast/resolution at depth, has thus generated significant excitement
among preclinical imaging researchers. However, these end-users currently lack a reliable, reproducible, and
validated molecular PAI platform to complement their translational research. To address this need, we propose
enabling the molecular sensitivity of PAI through the development and validation of targeted contrast agents and
signal/image processing algorithms to allow simultaneous, reproducible, quantitative, longitudinal, and
tomographic imaging of molecular and physiological signatures of disease and therapy response in preclinical
studies. Many available molecular contrast agents lack adequate PAI contrast for deep imaging and/or overlap
with spectral features of hemoglobin absorption, making it difficult to differentiate a targeted probe from
surrounding blood. To address these limitations, we seek to continue development of a unique contrast agent
based on antibody-targeted liposomes loaded with J-aggregates of indocyanine green (ICG) dye. Encapsulation
of ICG J-aggregates in a liposomal compartment results in a stable contrast agent (Lipo-JICG), which provides
highly advantageous properties for in vivo PAI: (i) a strong, narrow absorbance at ~890 nm, where it can be
readily unmixed from hemoglobin spectra; (ii) enhancement of PAI signal due to dye-aggregation-mediated
increases in thermal gradients and absorbance; (iii) the ability to implement robust, semi-quantitative PAI
analysis that does not interfere with imaging of important physiological parameters such as blood oxygen
saturation. Our compelling preliminary data show that targeted Lipo-JICG provides impressive stability, linearity,
PAI-signal intensity and molecular specificity. During this research proposal, we will validate the molecular-
imaging capabilities of this promising technology in tissue-mimicking phantoms, well-characterized cell cultures,
and orthotopic models of ovarian cancer. At the conclusion of these studies, we will be in position to start mass-
production and end-user dissemination of Lipo-JICG and image processing algorithms as a fully validated,
molecularly specific PAI platform for reliable, reproducible, and affordable preclinical imaging. Although not the
principle objective of this proposal, these studies also provide a foundation for clinical translation of our agent as
the liposomes, ICG, and humanized-targeted antibodies of which it is composed have all been FDA cleared for
i.v. use, therefore reducing safety concerns and improving the chances for future clinical utilization.
项目总结
小动物模型在医学研究中是强大的发现工具,但牺牲阻止了长期的活体实验
对自然或病理过程的观察。因此,需要一种形态上、功能上、
细胞/分子,定量成像技术,能够纵向可视化的生化和
小动物疾病模型中的药理过程。不幸的是,目前的分子光学成像
这种方法往往会在成像深度和分辨率之间进行不受欢迎的权衡。非侵入性
光声成像(PAI),它能够同时进行解剖、功能和分子成像
因此,具有高对比度/分辨率的深度病理可视化引起了极大的兴奋
在临床前影像研究人员中。然而,这些最终用户目前缺乏可靠、可重现和
经过验证的分子PAI平台可以补充他们的翻译研究。为了满足这一需求,我们建议
通过靶向造影剂的开发和验证实现PAI的分子敏感性
信号/图像处理算法,允许同时、可重现、定量、纵向和
临床前疾病和治疗反应的分子和生理特征的断层成像
学习。许多可用的分子造影剂缺乏足够的PAI对比度来进行深度成像和/或重叠
具有血红蛋白吸收的光谱特征,使得很难区分靶向探针和
周围的血迹。为了解决这些局限性,我们寻求继续开发一种独特的造影剂
基于装载吲哚青绿(ICG)染料J-聚集体的抗体靶向脂质体。封装
ICG J-聚集体在脂质体隔间中的聚集导致稳定的造影剂(Lipo-JICG),其提供
体内PAI的非常有利的性质:(I)在~890 nm处有强而窄的吸收,在这里它可以
容易从血红蛋白光谱中分离出来;(Ii)染料聚集介导的PAI信号增强
提高温度梯度和吸光度;(3)实施稳健、半定量PAI的能力
不干扰血氧等重要生理参数成像的分析
饱和度。我们令人信服的初步数据表明,靶向Lipo-JICG提供了令人印象深刻的稳定性、线性
PAI-信号强度和分子特异性。在这项研究计划中,我们将验证分子-
这项前景看好的技术在组织模拟体模、特征明确的细胞培养、
以及卵巢癌的原位模型。在这些研究结束后,我们将可以开始大规模-
制作和最终用户传播的Lipo-JICG和图像处理算法作为一个充分验证的,
分子特定的PAI平台,用于可靠、可重复性和负担得起的临床前成像。虽然不是
这项建议的主要目的,这些研究也为我们的代理的临床翻译提供了基础
由其组成的脂质体、ICG和人源化靶向抗体都已通过FDA的检查
静脉注射。使用,因此减少了安全问题,并提高了未来临床使用的机会。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard R Bouchard其他文献
Richard R Bouchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard R Bouchard', 18)}}的其他基金
Development of fluorinated dyes for deeper tissue photoacoustic imaging with phase changing nanodroplets
开发用于相变纳米液滴更深组织光声成像的氟化染料
- 批准号:
10302536 - 财政年份:2021
- 资助金额:
$ 60.33万 - 项目类别:
Development of fluorinated dyes for deeper tissue photoacoustic imaging with phase changing nanodroplets
开发用于相变纳米液滴更深组织光声成像的氟化染料
- 批准号:
10439866 - 财政年份:2021
- 资助金额:
$ 60.33万 - 项目类别:
Molecular Photoacoustic Imaging for Diagnostics and Therapy Monitoring
用于诊断和治疗监测的分子光声成像
- 批准号:
10430137 - 财政年份:2020
- 资助金额:
$ 60.33万 - 项目类别:
Molecular Photoacoustic Imaging for Diagnostics and Therapy Monitoring
用于诊断和治疗监测的分子光声成像
- 批准号:
10224624 - 财政年份:2020
- 资助金额:
$ 60.33万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 60.33万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 60.33万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 60.33万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 60.33万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 60.33万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 60.33万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 60.33万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 60.33万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 60.33万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 60.33万 - 项目类别:
Standard Grant