Dissemination of a Software Platform for Efficient CT Radiation Dose Optimization and Diagnostic Performance Assessment

传播高效 CT 辐射剂量优化和诊断性能评估的软件平台

基本信息

  • 批准号:
    10631960
  • 负责人:
  • 金额:
    $ 31.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-20 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT With the introduction of many novel techniques to minimize radiation dose in CT, there is still a large variation in terms of radiation dose levels prescribed in CT exams and therefore a large variation of diagnostic performance. Some patients may receive higher dose than necessary. Some may be under-dosed and mis- diagnosed as a result of insufficient image quality. In order to determine the appropriate amount of radiation dose reduction in each exam, accurate quantification of diagnostic performance is needed so that the dose reduction can be achieved without sacrificing important diagnostic information. However, currently there is a lack of efficient and quantitative tools for objective assessment of diagnostic performance, particularly for many of the novel dose reduction methods involving non-linear processing of the data such as iterative reconstruction and deep-learning-based noise reduction methods. The specific goal of this application is to disseminate a highly automated solution, CT Protocol optimization (CTPro) software, to a wide CT community. This quantitative tool provides an efficient implementation of diagnostic performance assessment and CT radiation dose optimization. This tool is based on channelized Hotelling observer (CHO), which itself was developed decades ago to mimic human observer visual responses in signal detection tasks. However, the use of CHO in clinical CT is quite limited because of a lack of rigorous validation and efficient and robust implementation in practice. We were the first to demonstrate its correlation with human observer performance in low-contrast detection, classification and localization tasks in clinical CT. The main objective of the current proposal is to optimize this tool for simplicity and robustness, and disseminate it to CT researchers and clinical users, which will be accomplished through 3 specific aims: Aim 1: Optimize CTPro for simplicity, robustness, and generalizability. Aim 2: Develop an open-source web-based platform for software dissemination. Aim 3: Build use cases and disseminate CTPro. The proposed work is significant because the software tool will allow any CT users and researchers to perform CT radiation dose optimization and diagnostic performance evaluation in an efficient, quantitative, and objective manner. This work is innovative in that the automated tool will use quantitative measures of diagnostic performance to systematically guide the complex task of CT dose optimization, moving beyond traditional metrics that are inappropriate for many novel dose reduction techniques. The software tool, once widely employed, will facilitate a paradigm shift in how dose optimization and the evaluation of dose reduction techniques are performed, and will allow a more rapid and consistent adoption of dose reduction technology into clinical practice, which will benefit millions of CT patients.
项目摘要/摘要 随着许多新技术的引入以最大限度地减少CT的辐射剂量,仍有很大的变化 根据CT检查中规定的辐射剂量水平,因此诊断结果的差异很大 性能。一些患者可能会接受超过必要的剂量。一些可能是剂量不足和误用- 诊断为图像质量不足。为了确定合适的辐射量 减少剂量在每次检查中,需要准确量化诊断性能,以便剂量 可以在不牺牲重要诊断信息的情况下实现减少。但是,目前有一个 缺乏客观评估诊断业绩的有效和量化工具,特别是对许多 涉及诸如迭代等数据的非线性处理的新的剂量减少方法 基于重构和深度学习的降噪方法。 这个应用程序的具体目标是传播一个高度自动化的解决方案,CT协议优化 (CTPro)软件,提供给广泛的CT社区。此量化工具提供了一种高效的 诊断性能评估和CT辐射剂量优化。此工具基于通道化 霍特林观察者(CHO),它本身是在几十年前开发的,以模拟人类观察者的视觉反应 在信号检测任务中。然而,由于缺乏严谨的标准,CHO在临床CT中的应用相当有限 在实践中进行验证和高效而稳健的实施。我们最先证明了它们之间的关联 具有人类观察者在临床CT低对比度检测、分类和定位任务中的表现。 当前提案的主要目标是优化这一工具,以实现简单性和稳健性,以及 将其传播给CT研究人员和临床用户,这将通过3个具体目标来实现: 目标1:优化CTPro以实现简单性、健壮性和通用性。 目标2:开发一个基于网络的开源软件传播平台。 目标3:构建用例并传播CTPro。 拟议的工作意义重大,因为该软件工具将允许任何CT用户和研究人员执行 CT辐射剂量优化和诊断性能评估在有效、定量和 客观的态度。这项工作是创新的,因为自动化工具将使用 诊断性能,系统地指导复杂的CT剂量优化任务,超越 传统的测量方法不适用于许多新的剂量减少技术。软件工具,曾经 广泛应用,将促进剂量优化和剂量减少评估的范式转变 技术的实施,并将允许更快和更一致地采用剂量减少技术 进入临床实践,这将使数百万CT患者受益。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid measurement of the low contrast detectability of CT scanners.
  • DOI:
    10.1002/mp.14657
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Omigbodun A;Vaishnav JY;Hsieh SS
  • 通讯作者:
    Hsieh SS
Improvements in dose efficiency with high resolution scan modes in photon counting CT.
光子计数 CT 中高分辨率扫描模式提高了剂量效率。
Efficient Evaluation of Low-contrast Detectability of Deep-CNN-based CT Reconstruction Using Channelized Hotelling Observer on the ACR Accreditation Phantom.
在 ACR 认证模型上使用通道化 Hotelling 观察器对基于深度 CNN 的 CT 重建的低对比度可检测性进行有效评估。
Automated Web-based Software for CT Quality Control Testing of Low-contrast Detectability using Model Observers.
基于网络的自动化软件,用于使用模型观察器对低对比度可检测性进行 CT 质量控制测试。
3D printed phantom with 12 000 submillimeter lesions to improve efficiency in CT detectability assessment.
具有 12000 个亚毫米病变的 3D 打印模型,可提高 CT 可检测性评估的效率。
  • DOI:
    10.1002/mp.17064
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Shunhavanich,Picha;Mei,Kai;Shapira,Nadav;Stayman,JosephWebster;McCollough,CynthiaH;Gang,Grace;Leng,Shuai;Geagan,Michael;Yu,Lifeng;Noël,PeterB;Hsieh,ScottS
  • 通讯作者:
    Hsieh,ScottS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lifeng Yu其他文献

Lifeng Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lifeng Yu', 18)}}的其他基金

Dissemination of a Software Platform for Efficient CT Radiation Dose Optimization and Diagnostic Performance Assessment
传播高效 CT 辐射剂量优化和诊断性能评估的软件平台
  • 批准号:
    10445244
  • 财政年份:
    2019
  • 资助金额:
    $ 31.08万
  • 项目类别:
Dissemination of a Software Platform for Efficient CT Radiation Dose Optimization and Diagnostic Performance Assessment
传播高效 CT 辐射剂量优化和诊断性能评估的软件平台
  • 批准号:
    10019348
  • 财政年份:
    2019
  • 资助金额:
    $ 31.08万
  • 项目类别:
Dissemination of a Software Platform for Efficient CT Radiation Dose Optimization and Diagnostic Performance Assessment
传播高效 CT 辐射剂量优化和诊断性能评估的软件平台
  • 批准号:
    10187567
  • 财政年份:
    2019
  • 资助金额:
    $ 31.08万
  • 项目类别:
Multi-energy CT with Energy-integrating Detector
带能量积分探测器的多能CT
  • 批准号:
    9386352
  • 财政年份:
    2017
  • 资助金额:
    $ 31.08万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 31.08万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 31.08万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 31.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了