Leveraging COVID-19 to modernize depression care for VA primary care populations

利用 COVID-19 实现 VA 初级保健人群的抑郁症护理现代化

基本信息

项目摘要

Background: As part of comprehensive suicide prevention, VA integrated mental and physical health services to better detect and treat depression. Primary care nurses conduct screening annually. Clinicians, including Primary Care Mental Health Integration (PC-MHI) specialists, follow up as-needed for treatment. Depression detection and management processes are complex, involve multilevel stakeholders, and subject to significant disruption from COVID-19 and from resulting expansion of telehealth aiming to preserve care access. Fewer VA visits during the pandemic may signify lowered depression care quality and worsened patient outcomes. Significance: Depression affects 1 in 5 Veterans and is a leading cause of suicidality and disability. It contributes substantially to the current pandemic-related mental health crisis. Depression symptoms, including suicidal thoughts/behaviors, and related functional impairment have increased since COVID onset. Partnering with Primary Care, Mental Health, and Connected Care leaders, we propose to study pandemic-related service disruptions for depression, which may help to mitigate acute care use and mortality in the Veteran population. We apply established depression quality indicators from our prior research to a broad national scale at a critical time. We will also obtain feedback to improve current hybrid (virtual/in-person) care models from VA providers and Veterans who screened positive, including those who were not detected to have depression. Specific Aims: To improve virtual and in-person services for the VA primary care population during recovery, this proposal will examine how the pandemic disrupted depression care delivery mechanisms, including expanded telehealth, and patient outcomes. Our Specific Aims are: 1) To examine engagement in guideline- concordant care for depression (virtual or in-person) following screening, before and during the pandemic; 2) To compare psychiatric emergency/hospital visits and mortality from suicide between Veterans who screened positive and were detected versus not detected to have depression by clinicians; 3) To understand VA patients’ and providers’ current perspectives on addressing new depressive episodes using virtual and in-person modalities during the pandemic and eventual recovery. Methodology: Given hypothesized care disruption (lowered care quality) during COVID-19, Aim 1 proposes to extend our preliminary VISN methods nationally to assess the VA population’s trajectory from a new positive depression (and suicide-risk) screen to appropriate treatment (i.e., medication, therapy) in FY19-22/23. We will also examine the changing mix of virtual and in-person depression care delivered. Aim 2 will use interrupted time series analyses to explore the extent to which acute care use may be mitigated by clinician detection of depression nationally. We will also compare mortality rates between patients detected and not detected to have depression. Sub-analyses will reveal where (e.g., clinics with low PC-MHI access) and for whom (e.g., minorities) detection does not systematically occur, and downstream negative sequelae, to guide future intervention. Finally, Aim 3 will interview (1) 40 Veterans who were detected and not detected to have depression per Aims 1 & 2 about care-seeking behavior change, digital divide, etc. and (2) 40 VA primary care and PC-MHI providers about staffing shortage, telehealth adoption, etc. across three VAs (GLA, Syracuse, and Durham). In addition to contextualizing disrupted care findings, qualitative data will help isolate best practices on patient-to-provider and provider-to-provider (e.g., handoffs) interactions in hybrid depression care models. Next Steps/Implementation: The COVID-19 pandemic provides the VA with an opportunity to improve upon a system-wide proactive response to depression and suicide, one that is conceptualized to care for the entire Veteran population. This proposed research will provide the basis for testable hypotheses (e.g., acceptable virtual depression treatments in primary care), and clinical recommendations (e.g., satisfactory virtual provider- to-provider handoffs for new patient referrals), to improve virtual and in-person VA depression services.
背景:作为全面预防自杀的一部分,退伍军人管理局整合了心理和身体健康服务 以便更好地发现和治疗抑郁症。初级保健护士每年进行筛查。临床医生,包括 初级保健精神卫生综合(PC-MHI)专家,根据需要跟进治疗。抑郁症 检测和管理过程复杂,涉及多个级别的利益相关者,并受到重大 新冠肺炎带来的破坏,以及旨在保持医疗服务可获得性的远程医疗服务的扩张。更少 在大流行期间,退伍军人管理局的来访可能意味着抑郁症护理质量下降,患者预后恶化。 意义:抑郁症影响着五分之一的退伍军人,是自杀和残疾的主要原因。它 这在很大程度上造成了当前与大流行有关的精神卫生危机。抑郁症状,包括 自COVID发病以来,自杀想法/行为以及相关的功能损害有所增加。合作伙伴关系 与初级保健、心理健康和互联保健领导者一起,我们建议研究与流行病相关的服务 对抑郁症的干扰,这可能有助于减少退伍军人的急性护理使用和死亡率。 我们将我们先前研究中建立的抑郁症质量指标应用到广泛的全国范围内 时间到了。我们还将从退伍军人管理局获得改善当前混合型(虚拟/面对面)护理模式的反馈 以及筛查呈阳性的退伍军人,包括那些没有被检测到患有抑郁症的人。 具体目标:改善康复期间退伍军人初级保健人口的虚拟和面对面服务, 这项提案将审查大流行如何扰乱抑郁症护理提供机制,包括 扩展的远程医疗和患者结果。我们的具体目标是:1)审查准则中的参与度- 对筛查后、大流行前和大流行期间的抑郁症(虚拟或面对面)进行协调护理;2) 比较接受过筛查的退伍军人的精神急诊/住院次数和自杀死亡率 3)了解VA患者的抑郁状况 以及提供者目前对使用虚拟和面对面解决新的抑郁发作的看法 在大流行期间和最终恢复期间的模式。 方法:假设新冠肺炎期间出现护理中断(护理质量降低),目标1建议 将我们的VISN初步方法推广到全国,以从新的积极因素评估退伍军人人数的轨迹 在19-22/23财年,对抑郁症(和自杀风险)进行筛查,以进行适当的治疗(即药物治疗)。我们会 还要研究一下提供的虚拟和面对面抑郁症护理的变化组合。AIM 2将中断使用 时间序列分析,以探索临床医生检测到的急性护理使用可能减轻的程度 全国范围内的抑郁症。我们还将比较检测到的和未检测到的患者之间的死亡率 有抑郁症。子分析将揭示在哪里(例如,PC-MHI接入较低的诊所)以及针对谁(例如, 少数族裔)检测未系统发生,下游有负面后遗症,引导未来 干预。最后,AIM 3将采访(1)40名被检测到但未被检测到患有 抑郁症Per目标1和2与求医行为改变、数字鸿沟等有关,以及(2)40VA初级保健 和PC-MHI提供商有关人员短缺、远程医疗采用等问题,涉及三个虚拟助理(GLA、Syracuse和 达勒姆)。除了将中断的护理结果与背景联系起来外,定性数据还将帮助隔离最佳实践 关于混合型抑郁症护理模型中患者到提供者和提供者到提供者(例如,移交)的交互。 下一步/实施:新冠肺炎疫情为退伍军人事务部提供了一个改善 全系统主动应对抑郁和自杀,这是一种概念化的照顾整个 退伍军人。这项拟议的研究将为可检验的假设(例如,可接受的 初级保健中的虚拟抑郁症治疗)和临床建议(例如,令人满意的虚拟提供者- 对新患者转介的移交),以改善虚拟和面对面的VA抑郁症服务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lucinda B Leung其他文献

Lucinda B Leung的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lucinda B Leung', 18)}}的其他基金

Virtual Care Coordination in VA Primary Care-Mental Health Integration
退伍军人事务部初级保健-心理健康一体化中的虚拟护理协调
  • 批准号:
    10639607
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving Depression Management in Primary Care
改善初级保健中的抑郁症管理
  • 批准号:
    10186554
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Improving Depression Management in Primary Care
改善初级保健中的抑郁症管理
  • 批准号:
    10689686
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Improving Depression Management in Primary Care
改善初级保健中的抑郁症管理
  • 批准号:
    10460426
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了