Developing Suicide Risk Algorithms for Diverse Clinical Settings using Data Fusion
使用数据融合开发针对不同临床环境的自杀风险算法
基本信息
- 批准号:10414116
- 负责人:
- 金额:$ 77.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-16 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccreditationAddressAdultAlgorithmsAmericanAwardBackCaringCessation of lifeCharacteristicsClinicClinicalClinical DataClinical assessmentsConnecticutDataData SetData SourcesDatabasesDevelopmentEconomicsElectronic Health RecordElementsGoalsHealthHealth PersonnelHealth systemHealthcareHealthcare SystemsHospitalsIndividualIntegrated Delivery SystemsJointsLocationMachine LearningMaintenanceMeasuresMedicalMedical RecordsMethodsModelingNatureNeighborhood Health CenterOutpatientsPatientsPerformancePopulationPrimary Health CareProcessProviderPublic HealthRecoveryResearchRiskRisk FactorsSensitivity and SpecificitySuicideSuicide attemptSystemTechniquesTestingUnited StatesVariantacute carebehavioral healthclinical careclinical practiceclinical riskdata fusiondata mininghealth care disparityhealth care service organizationhealth care settingshealth information technologyhealth planimprovedinnovationmedical specialtiesmeetingsmultimodal datapatient populationpatient safetypredictive modelingpredictive testprovider behaviorsuicidal behaviorsuicidal morbiditysuicidal risksuicide mortalitytransfer learningurgent care
项目摘要
Suicide is one of the most serious public health problems facing the United States. Recent evidence indicates
that many if not most of individuals who die by suicide have been in contact with the healthcare system in the
months prior to their death, providing data that can be used to identify patients at risk prior to an attempt. The
proposed project will develop an innovative method for identifying patients at risk of suicidal behavior using
data from a large multistate health information exchange, integrated with data from the State of Connecticut’s
CHIME hospital database. We will develop and test suicide risk algorithms using principles associated with
transfer learning, in which information from a comprehensive external data source is used to improve
prediction in a more limited dataset. Specifically, we will use multimodal data fusion techniques to develop and
test algorithms that can identify patients at risk of suicidal behavior by clinicians in hospitals with limited
numbers of patients, select patient populations, and lack of access to outpatient data. This approach is not
only generalizable to hospitals throughout the US but can be extended to very diverse clinical settings, e.g.,
primary and specialty care practices, community health centers, urgent care clinics.
The potential public health significance of this study is substantial. The fragmentation of the healthcare
system, particularly in relation to patients’ behavioral health needs, highlights the critical need to cultivate
comprehensive, system-wide approaches to identifying and managing at patients at risk of suicide.
自杀是美国面临的最严重的公共卫生问题之一。最近的证据表明
许多(如果不是大多数)自杀者都曾与该国的医疗系统有过联系
在他们死亡前几个月,提供可用于在尝试之前识别处于危险中的患者的数据。这
拟议的项目将开发一种创新方法,通过使用
来自大型多州健康信息交换的数据,与康涅狄格州的数据集成
CHIME 医院数据库。我们将使用与以下相关的原则来开发和测试自杀风险算法
迁移学习,其中来自综合外部数据源的信息用于改进
在更有限的数据集中进行预测。具体来说,我们将使用多模式数据融合技术来开发和
测试算法可以由能力有限的医院的临床医生识别有自杀行为风险的患者
患者数量、特定患者群体以及无法获取门诊数据。这种方法不是
仅适用于美国各地的医院,但可以扩展到非常多样化的临床环境,例如,
初级和专科护理实践、社区卫生中心、紧急护理诊所。
这项研究的潜在公共卫生意义是重大的。医疗保健的碎片化
系统,特别是与患者的行为健康需求相关的系统,强调了培养
全面、全系统的方法来识别和管理有自杀风险的患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert H Aseltine其他文献
Robert H Aseltine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert H Aseltine', 18)}}的其他基金
Developing Suicide Risk Algorithms for Diverse Clinical Settings using Data Fusion
使用数据融合开发针对不同临床环境的自杀风险算法
- 批准号:
10264936 - 财政年份:2020
- 资助金额:
$ 77.9万 - 项目类别:
Developing Suicide Risk Algorithms for Diverse Clinical Settings using Data Fusion
使用数据融合开发针对不同临床环境的自杀风险算法
- 批准号:
10647718 - 财政年份:2020
- 资助金额:
$ 77.9万 - 项目类别:
Alcohol Screening and Brief Intervention in the ED
急诊室的酒精筛查和短暂干预
- 批准号:
6951714 - 财政年份:2004
- 资助金额:
$ 77.9万 - 项目类别:
Alcohol Screening and Brief Intervention in the ED
急诊室的酒精筛查和短暂干预
- 批准号:
6813958 - 财政年份:2004
- 资助金额:
$ 77.9万 - 项目类别:
Alcohol Screening and Brief Intervention in the ED
急诊室的酒精筛查和短暂干预
- 批准号:
6863706 - 财政年份:2004
- 资助金额:
$ 77.9万 - 项目类别:
PATHWAYS FROM CHILDHOOD ADVERSITY TO ADULT MENTAL HEALTH
从童年逆境到成年心理健康的途径
- 批准号:
6392143 - 财政年份:1997
- 资助金额:
$ 77.9万 - 项目类别:
PATHWAYS FROM CHILDHOOD ADVERSITY TO ADULT MENTAL HEALTH
从童年逆境到成年心理健康的途径
- 批准号:
2034516 - 财政年份:1997
- 资助金额:
$ 77.9万 - 项目类别:
PATHWAYS FROM CHILDHOOD ADVERSITY TO ADULT MENTAL HEALTH
从童年逆境到成年心理健康的途径
- 批准号:
2890751 - 财政年份:1997
- 资助金额:
$ 77.9万 - 项目类别:
PATHWAYS FROM CHILDHOOD ADVERSITY TO ADULT MENTAL HEALTH
从童年逆境到成年心理健康的途径
- 批准号:
2675428 - 财政年份:1997
- 资助金额:
$ 77.9万 - 项目类别:
PATHWAYS FROM CHILDHOOD ADVERSITY TO ADULT MENTAL HEALTH
从童年逆境到成年心理健康的途径
- 批准号:
6186229 - 财政年份:1997
- 资助金额:
$ 77.9万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 77.9万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 77.9万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 77.9万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 77.9万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 77.9万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 77.9万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 77.9万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 77.9万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 77.9万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 77.9万 - 项目类别:
Research Grant