Integrative Approaches to Understanding Genetic Basis of Neuropsychiatric Diseases

了解神经精神疾病遗传基础的综合方法

基本信息

  • 批准号:
    10413982
  • 负责人:
  • 金额:
    $ 50.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-17 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary Identifying the susceptibility genes and variants of neuro-psychiatric diseases will not only contribute to our understanding of these diseases, but also point to potential therapeutic targets. Genome-wide association studies (GWAS) are commonly used to study complex diseases, and have been highly successful in a range of disorder, for instance, more than 100 loci have been associated with the risk of Schizophrenia through GWAS. Nevertheless, in most cases, we do not know the biological mechanisms underlying disease associated loci, because the causal variants and genes are obscured by linkage disequilibrium (LD) and by the difficulty of interpreting functional effects of most genetic variants. The goal of this project is to develop novel statistical methods for integrative analysis of genetic data of neuropsychiatric diseases to better understand the underlying genes and biological processes. (1) We will develop a method to integrate expression QTL (eQTL) data with GWAS. Our method extends the popular Transcriptome-Wise Association Studies (TWAS). TWAS aims to discover risk genes, by effectively assessing the correlation of eQTLs of a gene with the phenotype of interest. TWAS has many advantages over standard single variant-based analysis, e.g. it reduces multiple testing burden and provides biological contexts of associations. However, current TWAS methods are susceptible to false positive findings. We will develop a rigorous statistical framework to control false discoveries by accounting for pleiotropic effects of variants. (2) Fine-mapping is the statistical approach to identifying causal variants in disease-associated loci. Current fine- mapping methods, however, are often not able to narrow down specific causal variants. Our approach is based on the observation that allelic heterogeneity (AH), i.e. many variants disrupting the same gene, is common. So we can leverage AH to identify risk genes, borrowing the statistical framework of fine-mapping. (3) Researchers have developed tools to joint analyze multiple traits to improve the power of gene discovery and to identify causal risk factors of diseases. Existing approaches, however, are often based on pair-wise analysis. We will develop a powerful statistical framework to better understand common biological processes driving genetic relationships among multiple traits. Additionally, we will develop more accurate Mendelian Randomization (MR) method to identify causal relationship among traits. (4) A key component of our effort is the development of user-friendly software that could benefit the broad psychiatric genetics community.
项目摘要 识别神经精神疾病的易感基因和变异不仅有助于我们的研究, 了解这些疾病,而且还指出了潜在的治疗靶点。全基因组关联 研究(GWAS)通常用于研究复杂疾病,并且在一系列研究中非常成功。 例如,通过GWAS,超过100个基因座与精神分裂症的风险相关。 然而,在大多数情况下,我们不知道疾病相关位点的生物学机制, 因为致病变异体和基因被连锁不平衡(LD)和 解释大多数遗传变异的功能效应。 该项目的目标是开发新的统计方法,用于遗传数据的综合分析, 神经精神疾病,以更好地了解潜在的基因和生物过程。(1)我们将 开发一种方法来整合表达QTL(eQTL)数据与GWAS。我们的方法扩展了流行的 Transcriptome-Wise Association Studies(TWAS)TWAS旨在通过有效评估, 基因的eQTL与目的表型的相关性。TWAS比标准的有许多优点 基于单一变异的分析,例如,它减少了多重测试负担,并提供了 协会.然而,目前的TWAS方法易受假阳性结果的影响。我们将开发一个 严格的统计框架,通过解释变体的多效性效应来控制错误的发现。(二) 精细定位是识别疾病相关基因座中的因果变异的统计方法。现行罚款- 然而,定位方法往往不能缩小特定因果变异的范围。我们的做法是根据 等位基因异质性(AH),即破坏相同基因的许多变体,是常见的。所以 我们可以利用AH来识别风险基因,借用精细定位的统计框架。(三) 研究人员已经开发出联合分析多种性状的工具,以提高基因发现的能力, 以确定疾病的因果风险因素。然而,现有的方法通常是基于成对的 分析.我们将开发一个强大的统计框架,以更好地了解常见的生物过程 在多个性状之间驱动遗传关系。此外,我们将开发更精确的孟德尔 随机化(MR)方法来确定性状之间的因果关系。(4)我们努力的一个关键组成部分是 开发用户友好的软件,使广大的精神病遗传学界受益。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A functional genomics pipeline identifies pleiotropy and cross-tissue effects within obesity-associated GWAS loci.
  • DOI:
    10.1038/s41467-021-25614-3
  • 发表时间:
    2021-09-06
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Joslin AC;Sobreira DR;Hansen GT;Sakabe NJ;Aneas I;Montefiori LE;Farris KM;Gu J;Lehman DM;Ober C;He X;Nóbrega MA
  • 通讯作者:
    Nóbrega MA
Annotating functional effects of non-coding variants in neuropsychiatric cell types by deep transfer learning.
  • DOI:
    10.1371/journal.pcbi.1010011
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
  • 通讯作者:
A new Bayesian factor analysis method improves detection of genes and biological processes affected by perturbations in single-cell CRISPR screening.
  • DOI:
    10.1038/s41592-023-02017-4
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Zhou, Yifan;Luo, Kaixuan;Liang, Lifan;Chen, Mengjie;He, Xin
  • 通讯作者:
    He, Xin
Transcriptome and regulatory maps of decidua-derived stromal cells inform gene discovery in preterm birth.
Decidua衍生的基质细胞的转录组和调节图为早产中的基因发现提供了信息。
  • DOI:
    10.1126/sciadv.abc8696
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Sakabe NJ;Aneas I;Knoblauch N;Sobreira DR;Clark N;Paz C;Horth C;Ziffra R;Kaur H;Liu X;Anderson R;Morrison J;Cheung VC;Grotegut C;Reddy TE;Jacobsson B;Hallman M;Teramo K;Murtha A;Kessler J;Grobman W;Zhang G;Muglia LJ;Rana S;Lynch VJ;Crawford GE;Ober C;He X;Nóbrega MA
  • 通讯作者:
    Nóbrega MA
CCmed: cross-condition mediation analysis for identifying replicable trans-associations mediated by cis-gene expression.
CCmed:交叉条件介导分析,用于识别由顺式基因表达介导的可复制反式关联。
  • DOI:
    10.1093/bioinformatics/btab139
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang,Fan;Gleason,KevinJ;Wang,Jiebiao;Duan,Jubao;He,Xin;Pierce,BrandonL;Chen,LinS
  • 通讯作者:
    Chen,LinS
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xin He其他文献

Xin He的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xin He', 18)}}的其他基金

Discovery and interrogation of genetic regulatory variation impacting Atrial Fibrillation risk
影响心房颤动风险的基因调控变异的发现和询问
  • 批准号:
    10593080
  • 财政年份:
    2022
  • 资助金额:
    $ 50.32万
  • 项目类别:
Refining mutation rates and measures of purifying selection with an application to understanding the impact of non-coding variation on neuropsychiatric diseases
改进突变率和纯化选择的措施,并应用于了解非编码变异对神经精神疾病的影响
  • 批准号:
    10245296
  • 财政年份:
    2020
  • 资助金额:
    $ 50.32万
  • 项目类别:
Refining mutation rates and measures of purifying selection with an application to understanding the impact of non-coding variation on neuropsychiatric diseases
改进突变率和纯化选择的措施,并应用于了解非编码变异对神经精神疾病的影响
  • 批准号:
    10442570
  • 财政年份:
    2020
  • 资助金额:
    $ 50.32万
  • 项目类别:
Refining mutation rates and measures of purifying selection with an application to understanding the impact of non-coding variation on neuropsychiatric diseases
改进突变率和纯化选择的措施,并应用于了解非编码变异对神经精神疾病的影响
  • 批准号:
    10058223
  • 财政年份:
    2020
  • 资助金额:
    $ 50.32万
  • 项目类别:
Refining mutation rates and measures of purifying selection with an application to understanding the impact of non-coding variation on neuropsychiatric diseases
改进突变率和纯化选择的措施,并应用于了解非编码变异对神经精神疾病的影响
  • 批准号:
    10665606
  • 财政年份:
    2020
  • 资助金额:
    $ 50.32万
  • 项目类别:
Integrative Approaches to Understanding Genetic Basis of Neuropsychiatric Diseases
了解神经精神疾病遗传基础的综合方法
  • 批准号:
    10224033
  • 财政年份:
    2017
  • 资助金额:
    $ 50.32万
  • 项目类别:
Integrative Approaches to Mapping Susceptibility Genes of Complex Neuropsychiatric Disorders
绘制复杂神经精神疾病易感基因的综合方法
  • 批准号:
    9311685
  • 财政年份:
    2017
  • 资助金额:
    $ 50.32万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了